
CNN Architectures
Neural Networks Design And Application

1

Input resolution issue

• Global average pooling

16@5x5 kernels

10@5x5

2

change to

change to
10@5x5 kernels

The number of classes

Average pooling over
each matrix (f. map)
to generate a scalar

10@1

Each element is
the prediction
of each class

Difference between ConvNet and MLP

• Sparse connectivity

• Parameter sharing

• Equivariant representations

3

Sparse connectivity of convolution

Feedforward network (fully connected layer)

4

Sparse connectivity of convolution

Q: how many arrows we have?

Feedforward network (fully connected layer)

5

Sparse connectivity of convolution

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

Feedforward network (fully connected layer)

6

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

Feedforward network (fully connected layer)

7

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

𝑥 and 𝑤 are vectors; 𝑠 is a scalar number

Feedforward network (fully connected layer)

8

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

𝑥 and 𝑤 are vectors; 𝑠 is a scalar number

Feedforward network (fully connected layer)

9

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

Feedforward network (fully connected layer)

10

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

Feedforward network (fully connected layer)

11

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5]

𝑊

=

Feedforward network (fully connected layer)

12

Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5]

𝑊

=

(5x5 weight matrix)

Feedforward network (fully connected layer)

13

Sparse connectivity of convolution

Convolutional layers

14

Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

15

Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs

16

Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
𝑥1, … , 𝑥5→3x5-2=13 arrows

17

Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
𝑥1, … , 𝑥5→3x5-2=13 arrows

18

Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
𝑥1, … , 𝑥5→3x5-2=13 arrows

19

Sparse connectivity of convolution

The view of convolutional kernel/filter

20

Sparse connectivity of convolution

The view of convolutional kernel/filter

21

Sparse connectivity of convolution

The view of convolutional kernel/filter

22

Sparse connectivity of convolution

Q: filter size and stride?

The view of convolutional kernel/filter

23

Sparse connectivity of convolution

Q: filter size and stride?

Filter size = 3 + stride = 1 with 0-pading

The view of convolutional kernel/filter

24

Sparse connectivity of convolution

Q: filter size and stride?

Filter size = 3 + stride = 1 with 0-pading

The view of convolutional kernel/filter

0 0

25

Sparse connectivity of convolution

Weights→25 scalar numbers

Weights→13 scalar numbers

Dense connection

Sparse connection

26

Sparse connectivity of convolution

Weights→25 scalar numbers

Weights→13 scalar numbers

Dense connection

Sparse connection

27

Sparse connectivity of convolution

Weights→25 scalar numbers

Weights→13 scalar numbers

Dense connection

Sparse connection

28

Sparse connectivity of convolution

29

Sparse connectivity of convolution

3 layers

30

Sparse connectivity of convolution

3 layers

31

Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

32

Sparse connectivity of convolution

3 layers

Receptive field of ℎ2

33

Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

34

Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

Deep layers has larger receptive field than shallow layers

35

Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

Deep layers has larger receptive field than shallow layers

Units in deep layer
indirectly connect to
all/most input image

36

Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

Deep layers has larger receptive field than shallow layers
Q: larger stride of convolution filter → increase receptive field?

Units in deep layer
indirectly connect to
all/most input image

37

Parameter sharing

In MLP (FC layer): 𝑤𝑇𝑥

38

Parameter sharing

Consider the same filter

39

Parameter sharing

Consider the same filter

40

Parameter sharing

Consider the same filter

41

Parameter sharing

Consider the same filter (but different part of input feat. map)

In convlayer:
𝑤𝑇 𝑥1; 𝑥2; 𝑥3
𝑤𝑇(𝑥2; 𝑥3; 𝑥4)
𝑤𝑇(𝑥3; 𝑥4; 𝑥5)

42

Equivariance

43

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

44

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

45

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

46

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

47

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3

48

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3 𝑠4

49

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3 𝑠4 𝑠5

50

Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3 𝑠4 𝑠5

51

Pooling: invariance to small translation

52

Pooling: invariance to small translation

Q: what is type of pooling?
Max or average pooling?

53

Pooling: invariance to small translation

Q: what is type of pooling?
Max or average pooling?

Max pooling

54

Pooling: invariance to small translation

55

Pooling: invariance to small translation

Translate: change the input value a little bit
 + change their positions

56

Pooling: invariance to small translation

Translate: change the input value a little bit
 + change their positions

57

Seagull = 1?

58

Seagull = 1?

Seagull is in the center 59

Seagull = 1?

60

Seagull = 1?

Seagulls are present, but not in the center
61

Seagull = 1?

Seagulls are present, but not in the center
62

Seagull = 1?

Seagulls are present, but not in the center

CNNs can tell:
whether seagulls are present
Not tell:
their positions in the image

63

Seagull = 1?

Seagulls are present, but not in the center

CNNs can tell:
whether seagulls are present
Not tell:
their positions in the image

Invariant to small translations

64

A typical convolutional layer

65

A typical convolutional layer

66

A typical convolutional layer

67

A typical convolutional layer

68

A typical convolutional layer

Merge

69

70

Read: Figure 9.11 in deep learning book
Try to understand how we can design architecture
and build these three networks

71

AlexNet

72

VGG-16

73
[VGG]

ImageNet competition

74

ImageNet competition
More layers

75

ImageNet competition
More layers

Better performance 76

Inception (GoogLeNet)

77

Inception (GoogLeNet)

78

Inception (GoogLeNet)

79

Inception (GoogLeNet)

80

Inception (GoogLeNet)

Q: difference between those two variants?

81

Inception (GoogLeNet)

82

Inception (GoogLeNet)

a tensor → a matrix (channel)

a filter/kernel 83

Inception (GoogLeNet)

a tensor → m matrices (channels)

m filter/kernel 84

Inception (GoogLeNet)
Computationally heavy

Computationally heavy
85

Inception (GoogLeNet)

Dimension reduction

Computationally heavy

Computationally heavy
86

Inception (GoogLeNet)

Dimension reduction

Computationally heavy

Less channels

Computationally heavy
87

Inception (GoogLeNet)

a linear model

88

Inception (GoogLeNet)

89

Inception (GoogLeNet)

90

Inception (GoogLeNet)

Q: why output prediction
from lower layers?

91

Inception (GoogLeNet)

Q: why output prediction
from lower layers?

Hint: remember gradient vanishing?
92

of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

More conv layers

93

of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

More conv layers

94

of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Hint (again): remember gradient vanishing?

More conv layers

95

Gradient vanish

Sigmoid function
96

Gradient vanish

Sigmoid function

gradients->0

gradients->0

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

97

Gradient vanish

Sigmoid function

gradients-> 0.01

gradients-> 0.01

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

98

Gradient vanish

Sigmoid function

gradients-> 0.01

gradients-> 0.01

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

99

Gradient vanish

Sigmoid function

gradients-> 0.01

gradients-> 0.01

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

→ 0.01𝑛

100

of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Optimization may be difficult.

101

of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Optimization may be difficult. We do not have a good solution as our model.

102

Inception

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

→ 0.01𝑛

103

Inception

𝑓𝑛 … 𝑓2 𝑓1 𝑥 +𝑓𝑚 … 𝑓𝑛+2 𝑓𝑛+1 𝑥

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

→ 0.01𝑛

104

Inception

𝑓𝑛 … 𝑓2 𝑓1 𝑥 +𝑓𝑚 … 𝑓𝑛+2 𝑓𝑛+1 𝑥

𝑑𝑥𝑛

𝑑𝑥1
=

𝑑𝑥𝑛

𝑑𝑥𝑛−1
· ⋯ ·

𝑑𝑥2

𝑑𝑥1
·
𝑑𝑥1

𝑑𝑥
 +

𝑑𝑥𝑚

𝑑𝑥𝑚−1
· ⋯ ·

𝑑𝑥𝑛+2

𝑑𝑥𝑛+1
·
𝑑𝑥𝑛+1

𝑑𝑥

→ 0.01𝑛 >> 0

Will not be very small

105

Residual neural networks (ResNet)

106

Residual neural networks (ResNet)

Without special structure other than conv/fc layers
107

ResNet: shortcut connection

108

ResNet: shortcut connection

Conv layers

109

ResNet: shortcut connection

Conv layers

Addition operation

110

ResNet: shortcut connection

Conv layers

Addition operation

implication: same dimension

111

ResNet

112

ResNet

113

ResNet

114

ResNet

115

ResNet

116

ResNet

117

ResNet

118

ResNet

119

ResNet

3 blocks

120

ResNet

3 blocks

4 blocks

121

ResNet

3 blocks

4 blocks

6 blocks

122

ResNet

3 blocks

4 blocks

6 blocks

3 blocks

123

ResNet

124

ResNet

125

ResNet
floating point operations per second

126

ResNet
Measure: how complicated the model is

127

ResNet
Measure: how complicated the model is

128

ResNet
Measure: how complicated the model is

129

ResNet
Measure: how complicated the model is

Q: VGG-19 has much more FLOPS than 34-layer plain
network and 34-layer ResNet?

130

ResNet
Measure: how complicated the model is

Q: VGG-19 has much more FLOPS than 34-layer plain
network and 34-layer ResNet?

Reading material

131

https://stats.stackexchange.com/questions/280179/why-is-resnet-faster-than-vgg/280338

ResNet

132

ResNet

133

ResNet

134

ResNet

135

ImageNet competition winners

136

ImageNet competition winners

137

ImageNet competition winners
More layers

Better performance 138

References

• [LetNet-5] LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. "Gradient-based learning applied to document
recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

• [AlexNet] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.
"Imagenet classification with deep convolutional neural
networks." Advances in neural information processing systems 25
(2012): 1097-1105.

• [VGG] Simonyan, Karen, and Andrew Zisserman. "Very deep
convolutional networks for large-scale image recognition." arXiv
preprint arXiv:1409.1556 (2014). Arxiv at
https://arxiv.org/pdf/1409.1556.pdf

139

https://arxiv.org/pdf/1409.1556.pdf

References

• [Inception] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9. 2015. ArXiv at
https://arxiv.org/pdf/1409.4842.pdf (Section 4 and 5)

• [ResNet] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
"Deep residual learning for image recognition." In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770-
778. 2016. ArXiv at https://arxiv.org/pdf/1512.03385.pdf (Section 3.1,
3.2 and 3.3)

140

https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1512.03385.pdf

	Slide 1: CNN Architectures
	Slide 2: Input resolution issue
	Slide 3: Difference between ConvNet and MLP
	Slide 4: Sparse connectivity of convolution
	Slide 5: Sparse connectivity of convolution
	Slide 6: Sparse connectivity of convolution
	Slide 7: Sparse connectivity of convolution
	Slide 8: Sparse connectivity of convolution
	Slide 9: Sparse connectivity of convolution
	Slide 10: Sparse connectivity of convolution
	Slide 11: Sparse connectivity of convolution
	Slide 12: Sparse connectivity of convolution
	Slide 13: Sparse connectivity of convolution
	Slide 14: Sparse connectivity of convolution
	Slide 15: Sparse connectivity of convolution
	Slide 16: Sparse connectivity of convolution
	Slide 17: Sparse connectivity of convolution
	Slide 18: Sparse connectivity of convolution
	Slide 19: Sparse connectivity of convolution
	Slide 20: Sparse connectivity of convolution
	Slide 21: Sparse connectivity of convolution
	Slide 22: Sparse connectivity of convolution
	Slide 23: Sparse connectivity of convolution
	Slide 24: Sparse connectivity of convolution
	Slide 25: Sparse connectivity of convolution
	Slide 26: Sparse connectivity of convolution
	Slide 27: Sparse connectivity of convolution
	Slide 28: Sparse connectivity of convolution
	Slide 29: Sparse connectivity of convolution
	Slide 30: Sparse connectivity of convolution
	Slide 31: Sparse connectivity of convolution
	Slide 32: Sparse connectivity of convolution
	Slide 33: Sparse connectivity of convolution
	Slide 34: Sparse connectivity of convolution
	Slide 35: Sparse connectivity of convolution
	Slide 36: Sparse connectivity of convolution
	Slide 37: Sparse connectivity of convolution
	Slide 38: Parameter sharing
	Slide 39: Parameter sharing
	Slide 40: Parameter sharing
	Slide 41: Parameter sharing
	Slide 42: Parameter sharing
	Slide 43: Equivariance
	Slide 44: Equivariance
	Slide 45: Equivariance
	Slide 46: Equivariance
	Slide 47: Equivariance
	Slide 48: Equivariance
	Slide 49: Equivariance
	Slide 50: Equivariance
	Slide 51: Equivariance
	Slide 52: Pooling: invariance to small translation
	Slide 53: Pooling: invariance to small translation
	Slide 54: Pooling: invariance to small translation
	Slide 55: Pooling: invariance to small translation
	Slide 56: Pooling: invariance to small translation
	Slide 57: Pooling: invariance to small translation
	Slide 58: Seagull = 1?
	Slide 59: Seagull = 1?
	Slide 60: Seagull = 1?
	Slide 61: Seagull = 1?
	Slide 62: Seagull = 1?
	Slide 63: Seagull = 1?
	Slide 64: Seagull = 1?
	Slide 65: A typical convolutional layer
	Slide 66: A typical convolutional layer
	Slide 67: A typical convolutional layer
	Slide 68: A typical convolutional layer
	Slide 69: A typical convolutional layer
	Slide 70
	Slide 71
	Slide 72: AlexNet
	Slide 73: VGG-16
	Slide 74: ImageNet competition
	Slide 75: ImageNet competition
	Slide 76: ImageNet competition
	Slide 77: Inception (GoogLeNet)
	Slide 78: Inception (GoogLeNet)
	Slide 79: Inception (GoogLeNet)
	Slide 80: Inception (GoogLeNet)
	Slide 81: Inception (GoogLeNet)
	Slide 82: Inception (GoogLeNet)
	Slide 83: Inception (GoogLeNet)
	Slide 84: Inception (GoogLeNet)
	Slide 85: Inception (GoogLeNet)
	Slide 86: Inception (GoogLeNet)
	Slide 87: Inception (GoogLeNet)
	Slide 88: Inception (GoogLeNet)
	Slide 89: Inception (GoogLeNet)
	Slide 90: Inception (GoogLeNet)
	Slide 91: Inception (GoogLeNet)
	Slide 92: Inception (GoogLeNet)
	Slide 93: # of layers
	Slide 94: # of layers
	Slide 95: # of layers
	Slide 96: Gradient vanish
	Slide 97: Gradient vanish
	Slide 98: Gradient vanish
	Slide 99: Gradient vanish
	Slide 100: Gradient vanish
	Slide 101: # of layers
	Slide 102: # of layers
	Slide 103: Inception
	Slide 104: Inception
	Slide 105: Inception
	Slide 106: Residual neural networks (ResNet)
	Slide 107: Residual neural networks (ResNet)
	Slide 108: ResNet: shortcut connection
	Slide 109: ResNet: shortcut connection
	Slide 110: ResNet: shortcut connection
	Slide 111: ResNet: shortcut connection
	Slide 112: ResNet
	Slide 113: ResNet
	Slide 114: ResNet
	Slide 115: ResNet
	Slide 116: ResNet
	Slide 117: ResNet
	Slide 118: ResNet
	Slide 119: ResNet
	Slide 120: ResNet
	Slide 121: ResNet
	Slide 122: ResNet
	Slide 123: ResNet
	Slide 124: ResNet
	Slide 125: ResNet
	Slide 126: ResNet
	Slide 127: ResNet
	Slide 128: ResNet
	Slide 129: ResNet
	Slide 130: ResNet
	Slide 131: ResNet
	Slide 132: ResNet
	Slide 133: ResNet
	Slide 134: ResNet
	Slide 135: ResNet
	Slide 136: ImageNet competition winners
	Slide 137: ImageNet competition winners
	Slide 138: ImageNet competition winners
	Slide 139: References
	Slide 140: References

