
CNN Architectures
Neural Networks Design And Application
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Input resolution issue

• Global average pooling

16@5x5 kernels

10@5x5
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change to

change to
10@5x5 kernels

The number of classes

Average pooling over 
each matrix (f. map) 
to generate a scalar

10@1

Each element is 
the prediction 
of each class



Difference between ConvNet and MLP

• Sparse connectivity

• Parameter sharing

• Equivariant representations
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Sparse connectivity of convolution

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

Q: how many arrows we have?

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

𝑥 and 𝑤 are vectors; 𝑠 is a scalar number

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

𝑥 and 𝑤 are vectors; 𝑠 is a scalar number

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5]

𝑊

=

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

𝑥′𝑤 → 𝑠

𝑥′𝑤1 =෍

𝑖=1

5

𝑥𝑖𝑤1,𝑖

Q: how many arrows we have?

For each 𝑥𝑖: from 𝑠1 to 𝑠5→5 arrows 
𝑥1, … , 𝑥5→25 arrows

𝑥′𝑤2 =෍

𝑖=1

5

𝑥𝑖𝑤2,𝑖

𝑥′𝑤3 =෍

𝑖=1

5

𝑥𝑖𝑤3,𝑖

𝑥′𝑤4 =෍

𝑖=1

5

𝑥𝑖𝑤4,𝑖

𝑥′𝑤5 =෍

𝑖=1

5

𝑥𝑖𝑤5,𝑖

[𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5]

𝑊

=

(5x5 weight matrix)

Feedforward network (fully connected layer)
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Sparse connectivity of convolution

Convolutional layers
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Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?
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Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
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Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
𝑥1, … , 𝑥5→3x5-2=13 arrows
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Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
𝑥1, … , 𝑥5→3x5-2=13 arrows
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Sparse connectivity of convolution

Convolutional layers

Q: how many arrows we have?

For each 𝑥𝑖: connect to 3 𝑠 outputs
𝑥1, … , 𝑥5→3x5-2=13 arrows
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Sparse connectivity of convolution

The view of convolutional kernel/filter
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Sparse connectivity of convolution

The view of convolutional kernel/filter
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Sparse connectivity of convolution

The view of convolutional kernel/filter
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Sparse connectivity of convolution

Q: filter size and stride?

The view of convolutional kernel/filter
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Sparse connectivity of convolution

Q: filter size and stride?

Filter size = 3 + stride = 1 with 0-pading

The view of convolutional kernel/filter
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Sparse connectivity of convolution

Q: filter size and stride?

Filter size = 3 + stride = 1 with 0-pading

The view of convolutional kernel/filter

0 0
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Sparse connectivity of convolution

Weights→25 scalar numbers

Weights→13 scalar numbers

Dense connection

Sparse connection
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Sparse connectivity of convolution

Weights→25 scalar numbers

Weights→13 scalar numbers

Dense connection

Sparse connection
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Sparse connectivity of convolution

Weights→25 scalar numbers

Weights→13 scalar numbers

Dense connection

Sparse connection
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Sparse connectivity of convolution

29



Sparse connectivity of convolution

3 layers
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Sparse connectivity of convolution

3 layers
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Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3
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Sparse connectivity of convolution

3 layers

Receptive field of ℎ2
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Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

34



Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

Deep layers has larger receptive field than shallow layers
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Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

Deep layers has larger receptive field than shallow layers

Units in deep layer 
indirectly connect to 
all/most input image
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Sparse connectivity of convolution

3 layers

Receptive field of 𝑔3

Deep layers has larger receptive field than shallow layers
Q: larger stride of convolution filter → increase receptive field? 

Units in deep layer 
indirectly connect to 
all/most input image

37



Parameter sharing

In MLP (FC layer): 𝑤𝑇𝑥
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Parameter sharing

Consider the same filter
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Parameter sharing

Consider the same filter
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Parameter sharing

Consider the same filter
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Parameter sharing

Consider the same filter (but different part of input feat. map)

In convlayer: 
𝑤𝑇 𝑥1; 𝑥2; 𝑥3
𝑤𝑇(𝑥2; 𝑥3; 𝑥4)
𝑤𝑇(𝑥3; 𝑥4; 𝑥5)
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Equivariance
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3 𝑠4
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3 𝑠4 𝑠5
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Equivariance

𝑥2 𝑥3 𝑥4 𝑥5 0

𝑠3 𝑠4 𝑠5
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Pooling: invariance to small translation
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Pooling: invariance to small translation

Q: what is type of pooling?
Max or average pooling?
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Pooling: invariance to small translation

Q: what is type of pooling?
Max or average pooling?

Max pooling
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Pooling: invariance to small translation
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Pooling: invariance to small translation

Translate: change the input value a little bit
                  + change their positions
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Pooling: invariance to small translation

Translate: change the input value a little bit
                  + change their positions
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Seagull = 1?
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Seagull = 1?

Seagull is in the center 59



Seagull = 1?
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Seagull = 1?

Seagulls are present, but not in the center
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Seagull = 1?

Seagulls are present, but not in the center
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Seagull = 1?

Seagulls are present, but not in the center

CNNs can tell:
whether seagulls are present
Not tell:
their positions in the image
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Seagull = 1?

Seagulls are present, but not in the center

CNNs can tell:
whether seagulls are present
Not tell:
their positions in the image

Invariant to small translations 
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A typical convolutional layer
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A typical convolutional layer
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A typical convolutional layer
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A typical convolutional layer
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A typical convolutional layer

Merge
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Read: Figure 9.11 in deep learning book
Try to understand how we can design architecture
and build these three networks
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AlexNet
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VGG-16

73
[VGG]



ImageNet competition
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ImageNet competition
More layers
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ImageNet competition
More layers

Better performance 76



Inception (GoogLeNet) 
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Inception (GoogLeNet) 
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Inception (GoogLeNet) 
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Inception (GoogLeNet) 

80



Inception (GoogLeNet) 

Q: difference between those two variants?
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Inception (GoogLeNet) 

82



Inception (GoogLeNet) 

a tensor → a matrix (channel)

a filter/kernel 83



Inception (GoogLeNet) 

a tensor → m matrices (channels)

m filter/kernel 84



Inception (GoogLeNet) 
Computationally heavy

Computationally heavy
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Inception (GoogLeNet) 

Dimension reduction

Computationally heavy

Computationally heavy
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Inception (GoogLeNet) 

Dimension reduction

Computationally heavy

Less channels

Computationally heavy
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Inception (GoogLeNet) 

a linear model
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Inception (GoogLeNet) 
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Inception (GoogLeNet) 
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Inception (GoogLeNet) 

Q: why output prediction
from lower layers?
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Inception (GoogLeNet) 

Q: why output prediction
from lower layers?

Hint: remember gradient vanishing?
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# of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

More conv layers
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# of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

More conv layers
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# of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Hint (again): remember gradient vanishing?

More conv layers
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Gradient vanish

Sigmoid function
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Gradient vanish

Sigmoid function

gradients->0

gradients->0

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥
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Gradient vanish

Sigmoid function

gradients-> 0.01

gradients-> 0.01

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥
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Gradient vanish

Sigmoid function

gradients-> 0.01

gradients-> 0.01

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥
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Gradient vanish

Sigmoid function

gradients-> 0.01

gradients-> 0.01

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

→ 0.01𝑛
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# of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Optimization may be difficult.

101



# of layers

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Optimization may be difficult. We do not have a good solution as our model.
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Inception 

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

→ 0.01𝑛
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Inception 

𝑓𝑛 … 𝑓2 𝑓1 𝑥 +𝑓𝑚 … 𝑓𝑛+2 𝑓𝑛+1 𝑥

𝑑𝑥𝑛
𝑑𝑥1

=
𝑑𝑥𝑛
𝑑𝑥𝑛−1

· ⋯ ·
𝑑𝑥2
𝑑𝑥1

·
𝑑𝑥1
𝑑𝑥

→ 0.01𝑛
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Inception 

𝑓𝑛 … 𝑓2 𝑓1 𝑥 +𝑓𝑚 … 𝑓𝑛+2 𝑓𝑛+1 𝑥

𝑑𝑥𝑛

𝑑𝑥1
=

𝑑𝑥𝑛

𝑑𝑥𝑛−1
· ⋯ ·

𝑑𝑥2

𝑑𝑥1
·
𝑑𝑥1

𝑑𝑥
 + 

𝑑𝑥𝑚

𝑑𝑥𝑚−1
· ⋯ ·

𝑑𝑥𝑛+2

𝑑𝑥𝑛+1
·
𝑑𝑥𝑛+1

𝑑𝑥

→ 0.01𝑛 >> 0

Will not be very small
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Residual neural networks (ResNet)
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Residual neural networks (ResNet)

Without special structure other than conv/fc layers
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ResNet: shortcut connection
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ResNet: shortcut connection

Conv layers
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ResNet: shortcut connection

Conv layers

Addition operation
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ResNet: shortcut connection

Conv layers

Addition operation

implication: same dimension
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ResNet

112



ResNet

113



ResNet
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ResNet
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ResNet
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ResNet

117



ResNet

118



ResNet
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ResNet

3 blocks

120



ResNet

3 blocks

4 blocks
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ResNet

3 blocks

4 blocks

6 blocks
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ResNet

3 blocks

4 blocks

6 blocks

3 blocks
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ResNet
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ResNet

125



ResNet
floating point operations per second
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ResNet
Measure: how complicated the model is
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ResNet
Measure: how complicated the model is
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ResNet
Measure: how complicated the model is
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ResNet
Measure: how complicated the model is

Q: VGG-19 has much more FLOPS than 34-layer plain 
network and 34-layer ResNet?
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ResNet
Measure: how complicated the model is

Q: VGG-19 has much more FLOPS than 34-layer plain 
network and 34-layer ResNet?

Reading material

131

https://stats.stackexchange.com/questions/280179/why-is-resnet-faster-than-vgg/280338


ResNet
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ResNet
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ResNet

134



ResNet

135



ImageNet competition winners
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ImageNet competition winners

137



ImageNet competition winners
More layers

Better performance 138
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