Convolutional Layer and
Convolutional Neural Networks

Neural Networks Design And Application



History

Yann LeCunn

BP was used
invented by convolution to
different solve image
researchers problems; he AlexNet won
The first neural independently used BP to the ImageNet
network learn the filters. LeNet Challenge
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Perceptron Hinton and LSTM was Y
others invented. Neural networks were
reinvented BP; considered “dead” by
it then most ML researchers.
became
popular.

RNN was invented.



Review: house price prediction

A feature or Existing physical
representation properties
Q: How to generate
14234 | Land size (sqft) features for text?
d-dimension 3 4 #bedrooms
real number 99163 ¢ Zip code
1 ke Carpet (Y/N)
Afeature: X € Rd-‘ 4.3214 B
6.378 — Description text |« Assume:
We have a feature generator for text
an element -
belongs to a set 3 I’ #tbathrooms

1 [ Garage (Y/N)




Review: histogram of oriented gradients

* Oriented gradients?
 Gradients: changesin X and Y directions 121 /10 78 |96 |125

* Oriented: 48 | 152 |68 |125 | 111

145 | 78 -89 65

154 | 214 56 200 | 66

214 | 87 45 102 | 45

X direction G, Y direction G,

Subtract the value on the Subtract the pixel value
left from the pixel value below from the pixel value
on the right: above the selected pixel:
89-78 =11 68-56=8

4
Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/
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Review: histogram of oriented gradients

* Oriented gradients?
 Gradients: changesin X and Y directions 121 /10 78 |96 |125

* Oriented: 48 | 152 |68 |125 | 111

145 | 78 -89 65

154 | 214 56 200 | 66

214 | 87 45 102 | 45

X direction G, Y direction G,
G Subtract the value on the Subtract the pixel value
5 left from the pixel value below from the pixel value
_ _1 on the right: above the selected pixel:
¢ = tan™(Gy/Gz) 89-78 = 11 68-56=8

5
Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/
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Review: histogram of oriented gradients

121 10 78 96 125

48 152 &8 125 111

145 |78 -89 65

154 | 214 -~ 56 200 66

214 87 45 102 45

Freguency 1

Angle 1 2 (3 |4.. 35 |36 37 | 38  39... 175 176 177 178 179 180
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Review: ImageNet challenge 2012

AlexNet

Task 1
Team name Filename Error (5 guesses) Description
Using extra training data
SuperVision test-preds-141-146.2009-131- 0.15315 from ImageNet Fall 2011
P 137-145-146.2011-145f, ' I
release
test-preds-131-137-145-135- Using only supplied
SuperVision P 0.16422 . g Y stpp
145f.ixt training data
Weighted sum of scores
from each classifier with
ISI pred_FVs_wLACs_weighted.txt 0.26172 SIFT+FV, LBP+FV,
GIST+FV, and
CSIFT+FV, respectively.
Weighted sum of scores
1SI pred_FVs_weighted.txt 0.26602 from classifiers using
each FV.
Naive sum of scores from
1SI pred_FVs_summed.txt 0.26646 - .
classifiers using each FV.




Review: LeNet-5 In 1999

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
32x32 6@28x28 S2: f. maps

%t |T_
()

?250 layer F6 layer OUTPUT

| FuII conAectlon Gaussmn connections
Convolutions Subsampling Convolutlons Subsamplmg Full connectlon

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



What is convolutional neural network?

[] > 0> 255 (8 bits)

A grayscale image



What is convolutional neural network?

1/1/1, 0|0

o/(1(1(1|0

0|0|1|1 1
An image =2 a matrix

0O/ 01|10

0/1/1(0|0

A grayscale image
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Convolution for images (matrices)

g
~_

Involving two matrices
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Convolution for images (matrices)

Given image

Filter

g
~_

Involving two matrices
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Convolution for images (matrices)

Larger Smaller

|

Given image

Filter

g
~_

Involving two matrices
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Convolution for images (matrices)

Finding pairs
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Convolution for images (matrices)

Finding pairs
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Convolution for images (matrices)

Finding pairs
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Convolution for images (matrices)

| -

Finding pairs
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Convolution for images (matrices)

Finding pairs
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Convolution for images (matrices)

Finding pairs

Q: how many pairs we have?

19



Convolution for images (matrices)

Finding pairs
Q: how many pairs we have?

(5-3+1) * (5-3+1)=9
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Convolution for images (matrices)

Inner product of each pair
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Convolution for images (matrices)

| Inner productlof each pair

v

IEIementwise multiplication + summationl
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Convolution for images (matrices)

| Inner productlof each pair

v

IEIementwise multiplication + summationl

Q: what is your result for the first pair?
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Convolution for images (matrices)

| Inner productlof each pair

v

IEIementwise multiplication + summationl
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Convolution for images (matrices)

| Inner productlof each pair

v

IEIementwise multiplication + summationl
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Convolution for images (matrices)

Q: the second pair?
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Convolution for images (matrices)




Convolution for images (matrices)




Convolution for images (matrices)

We can repeat for each pair
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Convolution for images (matrices)

. | 9
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Convolution for images (matrices)

| . ’ .

Place each element
according to their positions
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Convolution for images (matrices)

| . ’

Row: 1
Column: 1

Place each element
according to their positions
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Convolution for images (matrices)

| . ’

Row: 1
Column: 2

Place each element
according to their positions
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Convolution for images (matrices)

| . ’

Row: 3
Column: 3

Place each element
according to their positions
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Convolution for images (matrices)

Q: dimension?
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Convolution for images (matrices)

n-m+1=3
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Convolution for images (matrices)

n-m+1=3

One matrix One matrix One matrix
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Convolution for images (matrices)

n-m+1=3

One matrix One matrix One matrix

One input matrix * one filter 2 one feature matrix
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Convolution for images (tensors)

Filter (tensor)

3x3 /
\/ /

N

Input tensor Output matrix
dyXd,X%3 (di — 2)x(d, — 2)




Convolution for images (tensors)

Filter (tensor)

3x3 /
\/ /

"

Input tensor Output matrix

d,xdx3] (dy — 2)x(dy — 2)




Convolution for images (tensors)

Filter (tensor)

3x3 /
\/ /

"

Input tensor Output matrix

d,xdx3] (dy — 2)x(dy — 2)

Q: why we care about tensors?




Convolution for images (tensors)

Filter (tensor)
3%3

Q: why we care about tensors?

\//

.

Input tensor Output matrix

d,xdx3] (dy — 2)x(dy — 2)

42
Image from https://e2eml.school/convert rgb to grayscale.html
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Convolution for images (tensors)

Filter (tensor)
3%3

Q: why we care about tensors?

\//

.

Input tensor Output matrix Reason 1:
d4 Xd (di — 2)x(dy — 2) RGB channels are more common

43
Image from https://e2eml.school/convert rgb to grayscale.html
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Convolution for images (tensors)

Filter (tensor)
3%3

Q: why we care about tensors?

\//

.

Input tensor Output matrix Reason 1:
d4 Xd (di — 2)x(dy — 2) RGB channels are more common

Each channel =2 a matrix

44
Image from https://e2eml.school/convert rgb to grayscale.html
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LeNet-51n 1999

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT

6@28x28

32x32 @ S2: f. maps C5: layer rg. layer OUTPUT
120 84 10

6@14x14 rl— rr
[—r
[T

N — |

| —
| ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

‘ Full conAection

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

C3: f. maps 16@10x10

INPUT &I@ zfgigge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer .
6@14x14 I 120 FG: layer  QUTPUT

r
"

i -
e |

|
‘ | Full connection | ‘ Gaussian connections
Subsampling IConvolutionsl Subsampling ull connection

B S

Convolutions

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5)(5

C5: layer |=6 layer OUTPUT

32x32 S2: f. maps
120

6@14x14 I I— r
\ | Full conﬁectlon Gaussmn connections

IConvolutmnsl | Subsamplmg u connectlon

B S

Convolutions Subsampling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



Subsampling operations

* Max pooling

29 | 15 | 28 | 184
0O |100| 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
\ J
100 | 184
12 | 45

48



Subsampling operations

* Max pooling

29 | 15 | 28 | 184
0O |100| 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
\/
100 | 184
12 | 45

Q: what does max
Pooling really do?
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Subsampling operations

* Max pooling
* Average pooling

29 | 15 | 28 | 184
0O |100| 70 | 38
12 | 12 { 2
12 | 12 | 45 6
2X2
pool size
\ J
100 | 184
12 | 45

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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Subsampling operations

* Max pooling
* Average pooling

Q: what does average
Pooling really do?

29 | 15 | 28 | 184
0O |100| 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
\/
100 | 184
12 | 45

31 15 | 28 | 184
0O |100| 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2Xx2
pool size

36

80

12

15

51



Subsampling operations

* Max pooling
* Average pooling

29 | 15| 28 | 184
O |100| 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2Xx2
pool size
\J
100 | 184
12 | 45

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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Subsampling operations

* Max pooling
* Average pooling

No overlapping

29 | 15| 28 | 184
0 0O 70 | 38
12 | 12 7 2
2 | 12 | 45 | 6
2Xx2
pool size
\J
100 | 184
12 | 45

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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Subsampling operations

: 29 | 15 | 28 | 184 31 | 15 | 28 | 184
* Max pooling
: 0 0| 70 | 38 0 |100| 70 | 38
* Average pooling
12 12| 7 | 2 12 | 12 [
= —
No overlapping 2 (12| 45 | 6 12 | 12 | 45 | 6
(stride=2%*2)
2X2 2Xx2
pool size pool size
\ \
100 | 184 36 | 80
12 | 45 12 | 15




Subsampling operations

: 29 | 15 | 28 | 184 31 | 15 | 28 | 184
* Max pooling
: 0 0| 70 | 38 0 [100| 70 | 38
* Average pooling
12|12 7 | 2 12 | 12 S
= —
No overlapping 2 | 12 | 45 | 6 12 | 12 | 45 | 6
(stride=2*2)
, 2x2 2X2
Row stride =2 pool size pool size
Column stride = 2
\ \
100 | 184 36 | 80
12 | 45 12 | 15




Subsampling operations

* Max pooling
* Average pooling

No overlapping
(stride=2*2)

Row stride =2
Column stride = 2

Q: Why pooling?
Connection to subsampling?

29 | 15| 28 | 184
0 0| 70 | 38
12 | 12 7 2
2 | 12 | 45 | 6
2Xx2
pool size
\ J
100 | 184
12 | 45

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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Subsampling operations

* Max pooling
* Average pooling

No overlapping
(stride=2*2)

Row stride =2
Column stride = 2

Q: Why pooling?
Connection to subsampling?

4%4 > 2*2

29 | 15| 28 | 184
0 0| 70 | 38
12 | 12 7 2
2 | 12 | 45 | 6
2Xx2
pool size
\ J
100 | 184
12 | 45

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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Subsampling operations

* Max pooling
* Average pooling

No overlapping
(stride=2*2)

Row stride =2
Column stride = 2

Q: Why pooling?
Connection to subsampling?

4%4 > 2*2

Dimension reduced

29 | 15| 28 | 184
0 0| 70 | 38
12 | 12 { 2
2 | 12 | 45 | 6
2Xx2
pool size
\ J
100 | 184
12 | 45

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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Subsampling operations

* Max pooling
* Average pooling

No overlapping
(stride=2*2)

Row stride =2
Column stride = 2

Q: Why pooling?
Connection to subsampling?

4%4 > 2*2

Dimension reduced

29 | 15| 28 | 184
O (100| 70 || 38
12 || 12 { 2
12 (|12 | 45 6
Px2
ppol size
\ J
100 | 18
f2 | 45

Use one to represent all

31 15 | 28 | 184
0O | 100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2X2
pool size
36 | 80
12 RS
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LeNet-51n 1999

Q: Why 6 matrices? Q: Why 16 matrices?

C3: f. maps 16@10x10
S4: f. maps 16@5x5

«f. maps r C5: layer F6 layer OUTPUT

6@f1 4x14 120

FuII conAectlon Gaussmn connections
ubsamplmg Full connectlon

C1: feature maps

INPUT
32%32 6@28x28

Convolutions Subsampling Convolutions

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

Q: Why 6 matrices?

C1: feature maps

INPUT
32%32 6@28x28

Q: Why 16 matrices? A (reason 2): we can use multiple filters at each layer

C3: f. maps 16@10x10
S4: f. maps 16@5x5

«f. maps r C5: layer F6 layer OUTPUT

6@f1 4x14 120

FuII conAectlon Gaussmn connections
ubsamplmg Full connectlon

Convolutions Subsampling Convolutions

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

Q: Why 6 matrices? Q: Why 16 matrices? A (reason 2): we can use multiple filters at each layer
' y = [C3:f. maps 16@10x10 |
INPUT g1: ;gigge maps I - f. maps 16@5x5
32x32 S2: f. maps C5: layer .
6@14x14 ™ 120 o, layer %TPUT

B S

‘ ——— |
| Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

Q: Why 6 matrices? Q: Why 16 matrices? A (reason 2): we can use multiple filters at each layer
' y = [C3:f. maps 16@10x10 |
INPUT | g1: ;gigge maps I - f. maps 16@5x5
32x32 S2: f. maps C5: layer .
6@14x14 ™ 120 o, layer %TPUT

B S

Convolutions

‘ — |
|_Ful conAection ‘ Gaussian connections
Subsampling Full connection

Convolutions

Subsampling

Fig. 1. Architecture of LeNet-5, a CanvolutionagVNeural Network, here for digits recog-
nition. Each plane is a feature map, i’e, a st of units whose weights are constrained
to be identical.

Subsampling layer: max/average pooling

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

One more question:
How C5 comes from?

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5)(

6@28x28 =
120 ayer F6 layer OUTPUT

32x32 S2: f. maps
r
B s

6@14x14 I I—
| FuII conAectlon Gaussmn connections

Convolutions Subsampling Convolutlons Subsamplmg Full connectlon

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

One more question:
How C5 comes from? Matrices = a vector?

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5)(

120 . ayer F6 layer OUTPUT

32x32 S2: f. maps
r
B s

6@14x14 I I—
| ‘ FuII conAectlon Gaussmn connections

Convolutions Subsampling Convolutions Subsamplmg Full connectlon

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

One more question:

Where C5 comes from? 16 matrices = a 120d vector?

INPU
32x32

Layer C5 is a convolutional layer with 120 feature maps.
Each unit i1s connected to a 5x5 neighborhood on all 16
of S4’s feature maps. Here, because the size of S4 is also

Fig. 1. |
nition. ]

5x9, the size of C5’s feature maps is 1x1: this amounts

ﬁto a full connection between S4 and C5. C5 is labeled

as a convolutional layer, instead of a fully-connected layer,
because if LeNet-5 input were made bigger with everything
else kept constant, the feature map dimension would be
larger than 1x1. This process of dynamically increasing the
size of a convolutional network is described in the section
Section VII. Layer C5 has 48,120 trainable connections.

onnections

S recog-
strained

to be id

entical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



LeNet-51n 1999

One more question:

Where C5 comes from? 16 matrices = a 120d vector?

INPU
32x32

Layer C5 is a convolutional layer with[120 feature maps.
Each unit i1s connected to a [5x5|neighborhood on all 16
of S4’s feature maps. Here, because the size of S4 is also

Fig. 1. |
nition. ]

5x9, the size of C5’s feature maps is 1x1: this amounts

ﬁto a full connection between S4 and C5. C5 is labeled

as a convolutional layer, instead of a fully-connected layer,
because if LeNet-5 input were made bigger with everything
else kept constant, the feature map dimension would be
larger than 1x1. This process of dynamically increasing the
size of a convolutional network is described in the section
Section VII. Layer C5 has 48,120 trainable connections.

onnections

S recog-
strained

to be id

entical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



Operations with convolution layers

e Padding
* Pooling layers for arbitrary input resolution



Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps



Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

| . ’ .

m=3 n-m+1=3

70



Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

m=3 n-m+1=3

If m>1 -2 ?7?
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

0|1 4(34
] 0|10 > 2143
0|1 2134
m=3 n-m+1=3

If m>1 = convolution will reduce the dimension

72



Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

0|1 4134
] 0|10 > 2143
0|1 2134
m=3 n-m+1=3

If m>1 = convolution will reduce the dimension
The input resolution introduces a limits of #convolution layers
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

Output
5%5

Input Ima‘gé< B )
SXS \v: A
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

Output
5%5

Input Ima‘gé< B )
SXS \v: A
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

Input size

Output n->7
5X5

Input Ima‘gé< B )
SXS \v: A
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

Input size
Output n=>7 2 n-m+1=7-3+1=5
5%b Output size

Input Ima‘gé< B )
SXS \v: -
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps

Output n=>7 2 n-m+1=7-3+1=5
5%5

Conclusion:
dimension of feature maps remains the same
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Operations with convolution layers

* Padding: convolution operation reduces the size of feature maps
* Pooling layers for an arbitrary input resolution
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Input resolution issue

C3: f. maps 16@10x10
C1: feature maps S4: . phd

INPUT
32x32 6@28x28 S2: f. maps

6@14x14

C5:layer rg: jayer OUTPUT
120 g4 . 10

—
B = _
| F ||cmnAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



Input resolution issue

We use 120 5x5 filters

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f._pfiags 16@5x5

6@28x28
32x32 @ S2: f. maps C5: layer rg. layer OUTPUT
120 84 10

6@14x14

—
B = _
| F ||cmnAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.



Input resolution issue

We use 120 5x5 filters But why 5x57?

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f._pfiags 16@5x5
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* Global average pooling [NIN]
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* Global average pooling
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Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.
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Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained

to be identical.
109



Input resolution issue Average pooling over

each matrix (f. map)
to generate a scalar

| i

10@5x5 10@1

* Global average pooling

C3: f. maps 16@10x10
C1: feature maps S4: f. maps

INPUT 6@26x28
32x32 rl— r
= T

|T_

S2: f. maps

CS layer
6@14x14 y F6:layer OUTPUT

84 10

The number of classes

-
‘ — |

Full coanecti Gaussian connections
Convolutions SI.lbsampIing Bdll connection

16@5x5 kernels| changeTg 10@5x5 kernels

Il =

Convolutions

Subsampling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained

to be identical.
110



Input resolution issue Average pooling over

each matrix (f. map)
to generate a scalar

| i

10@5x5 10@1

* Global average pooling

Each element is
the prediction
of each class

C3: f. maps 16@10x10
C1: feature maps S4: f. maps

S2: f. maps

CS layer
6@14x14 y F6:layer OUTPUT

84 10

INPUT 6@26x28
32x32 rl— r
= T

|T_

The number of classes

-
‘ — |

Full coanecti Gaussian connections
Convolutions SI.lbsampIing Bdll connection

16@5x5 kernels| changeTg 10@5x5 kernels

Il =

Convolutions

Subsampling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained

to be identical.
111



References

* LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio.
Object recognition with gradlent -based Iearnlng In Shape, contour
and grouping in computer vision, pp. 319-345. Springer, Berlin,
Heidelberg, 1999.
* Online at http://vyann.lecun.com/exdb/publis/pdf/lecun-99.pdf
* Section 2.2
* Understand architecture of LeNet-5

e LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-
based learning applied to document recognition." Proceedings of the
IEEE 86, no. 11 (1998): 2278-2324.

e Online at http://vision.stanford.edu/cs598 spring07/papers/Lecun98.pdf
* Section Il.B

112


http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

References

* [Alexnet] Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural
information processing systems 25 (2012): 1097-1105. Conference proceeding
version at
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436€924a68c45b-
Abstract.ntml or
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf (Section 3.5)

* [pyramid] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial
pyramid pooling in deep convolutional networks for visual recognition." |EEE
transactions on pattern analysis and machine intelligence 37, no. 9 (2015): 1904-
1916. ArXiv version at https://arxiv.org/abs/1406.4729 (Section 2.2)

* [NIN] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv
f)sreprint gr%()iv:1312.4400 (2013). ArXiv version at https://arxiv.org/abs/1312.4400
ection 3.

113


https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1406.4729
https://arxiv.org/abs/1312.4400

	Slide 1: Convolutional Layer and Convolutional Neural Networks
	Slide 2: History
	Slide 3: Review: house price prediction
	Slide 4: Review: histogram of oriented gradients
	Slide 5: Review: histogram of oriented gradients
	Slide 6: Review: histogram of oriented gradients
	Slide 7: Review: ImageNet challenge 2012
	Slide 8: Review: LeNet-5 in 1999
	Slide 9: What is convolutional neural network?
	Slide 10: What is convolutional neural network?
	Slide 11: Convolution for images (matrices)
	Slide 12: Convolution for images (matrices)
	Slide 13: Convolution for images (matrices)
	Slide 14: Convolution for images (matrices)
	Slide 15: Convolution for images (matrices)
	Slide 16: Convolution for images (matrices)
	Slide 17: Convolution for images (matrices)
	Slide 18: Convolution for images (matrices)
	Slide 19: Convolution for images (matrices)
	Slide 20: Convolution for images (matrices)
	Slide 21: Convolution for images (matrices)
	Slide 22: Convolution for images (matrices)
	Slide 23: Convolution for images (matrices)
	Slide 24: Convolution for images (matrices)
	Slide 25: Convolution for images (matrices)
	Slide 26: Convolution for images (matrices)
	Slide 27: Convolution for images (matrices)
	Slide 28: Convolution for images (matrices)
	Slide 29: Convolution for images (matrices)
	Slide 30: Convolution for images (matrices)
	Slide 31: Convolution for images (matrices)
	Slide 32: Convolution for images (matrices)
	Slide 33: Convolution for images (matrices)
	Slide 34: Convolution for images (matrices)
	Slide 35: Convolution for images (matrices)
	Slide 36: Convolution for images (matrices)
	Slide 37: Convolution for images (matrices)
	Slide 38: Convolution for images (matrices)
	Slide 39: Convolution for images (tensors)
	Slide 40: Convolution for images (tensors)
	Slide 41: Convolution for images (tensors)
	Slide 42: Convolution for images (tensors)
	Slide 43: Convolution for images (tensors)
	Slide 44: Convolution for images (tensors)
	Slide 45: LeNet-5 in 1999
	Slide 46: LeNet-5 in 1999
	Slide 47: LeNet-5 in 1999
	Slide 48: Subsampling operations
	Slide 49: Subsampling operations
	Slide 50: Subsampling operations
	Slide 51: Subsampling operations
	Slide 52: Subsampling operations
	Slide 53: Subsampling operations
	Slide 54: Subsampling operations
	Slide 55: Subsampling operations
	Slide 56: Subsampling operations
	Slide 57: Subsampling operations
	Slide 58: Subsampling operations
	Slide 59: Subsampling operations
	Slide 60: LeNet-5 in 1999
	Slide 61: LeNet-5 in 1999
	Slide 62: LeNet-5 in 1999
	Slide 63: LeNet-5 in 1999
	Slide 64: LeNet-5 in 1999
	Slide 65: LeNet-5 in 1999
	Slide 66: LeNet-5 in 1999
	Slide 67: LeNet-5 in 1999
	Slide 68: Operations with convolution layers
	Slide 69: Operations with convolution layers
	Slide 70: Operations with convolution layers
	Slide 71: Operations with convolution layers
	Slide 72: Operations with convolution layers
	Slide 73: Operations with convolution layers
	Slide 74: Operations with convolution layers
	Slide 75: Operations with convolution layers
	Slide 76: Operations with convolution layers
	Slide 77: Operations with convolution layers
	Slide 78: Operations with convolution layers
	Slide 79: Operations with convolution layers
	Slide 80: Input resolution issue
	Slide 81: Input resolution issue
	Slide 82: Input resolution issue
	Slide 83: Input resolution issue
	Slide 84: Input resolution issue
	Slide 85: Input resolution issue
	Slide 86: Input resolution issue
	Slide 87: Input resolution issue
	Slide 88: Input resolution issue
	Slide 89: Input resolution issue
	Slide 90: Input resolution issue
	Slide 91: Input resolution issue
	Slide 92: Input resolution issue
	Slide 93: Input resolution issue
	Slide 94: Input resolution issue
	Slide 95: Input resolution issue
	Slide 96: Input resolution issue
	Slide 97: Input resolution issue
	Slide 98: Input resolution issue
	Slide 99: Input resolution issue
	Slide 100: Input resolution issue
	Slide 101: Input resolution issue
	Slide 102: Input resolution issue
	Slide 103: Input resolution issue
	Slide 104: Input resolution issue
	Slide 105: Input resolution issue
	Slide 106: Input resolution issue
	Slide 107: Input resolution issue
	Slide 108: Input resolution issue
	Slide 109: Input resolution issue
	Slide 110: Input resolution issue
	Slide 111: Input resolution issue
	Slide 112: References 
	Slide 113: References

