
Compositing Units in Neural 
Networks

CPT_S 434/534 Neural network design and application



Today’s class

• What makes feedforward network different from linear model
• Understanding its structure

• Units for neural networks
• Output units → cost function

• 𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

• Hidden units

• 𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖
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nonlinear model: better capacity

Raw features Raw features 

Learned features output of inner function

If W can be learned (determined by training data)
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Boyd, Stephen, Stephen P. Boyd, and Lieven Vandenberghe. Convex 
optimization. Cambridge university press, 2004.

3.2 Operations that preserve convexity
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Cost function and output units

• How to interact with groundtruth labels?

• Likelihood function

• Maximum likelihood estimation

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

𝐿 𝑤 = 𝑃𝑤 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 = 𝑓 𝑤; 𝑥1  × ⋯ × 𝑓 𝑤; 𝑥𝑛 = ෑ

𝑖=1

𝑛

𝑓(𝑤; 𝑥𝑖)

approximate

Probability mass function 
(e.g., Bernoulli distribution)max

𝑤
log 𝐿 𝑤 = log ෑ

𝑖=1

𝑛

𝑓 𝑤; 𝑥𝑖 = ෍

𝑖=1

𝑛

log(𝑓(𝑤; 𝑥𝑖))

60

𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1 + 𝑒−𝑧

z: may be unbounded

satisfies probability format
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• How to interact with groundtruth labels?

• Maximum likelihood estimation

approximate
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Cost function and output units
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• Maximum likelihood estimation

Probability for data
approximate
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Cost function and output units

• How to interact with groundtruth labels?

• Maximum likelihood estimation

Probability for data
approximate

Probability for “cat”
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Cost function and output units

• How to interact with groundtruth labels?

• Maximum likelihood estimation

Probability for data
approximate

Probability for “cat”

Assume we 
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Cost function and output units

• How to interact with groundtruth labels?

• Maximum likelihood estimation

Probability for data
approximate

Probability for “cat”

Assume we 
know how to 
construct it

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

One-hot label: dog   cat   chair
   0      1       0

Probability prediction:

dog   cat   chair
0.01  0.98  0.01

72



Cost function and output units

• How to interact with groundtruth labels?

• Maximum likelihood estimation

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

Probability for data
approximate

Assume we 
know how to 
construct it

One-hot labels for “dog/cat/chair” on all data

Probability prediction for 
“dog/cat/chair” on all data
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Cost function and output units

• How to interact with groundtruth labels?

• Maximum likelihood estimation

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

Probability for data
approximate

Assume we 
know how to 
construct it

One-hot labels for “dog/cat/chair” on all data

Probability prediction for 
“dog/cat/chair” on all data
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Cost function and output units

• MLE and KL divergence

min
𝑝𝑚𝑜𝑑𝑒𝑙
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Cost function and output units

• MLE and KL divergence

min
𝑝𝑚𝑜𝑑𝑒𝑙

Empirical distribution (from training set): cannot scan all possible data
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Cost function and output units

• MLE and KL divergence

If we minimize the KL divergence between the two distributions:

min
𝑝𝑚𝑜𝑑𝑒𝑙

Empirical distribution (from training set): cannot scan all possible data
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Cost function and output units
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Cost function and output units
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Cost function and output units

• MLE and KL divergence

If we minimize the KL divergence between the two distributions:

min
𝑝𝑚𝑜𝑑𝑒𝑙

min
𝑝𝑚𝑜𝑑𝑒𝑙

Minimizing KL divergence
=

MLE

Equivalent to

Empirical distribution (from training set): cannot scan all possible data
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What are hidden units?

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

𝑓Inputs Outputs

82



What are hidden units?

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

𝑓Inputs Outputs

𝑓 𝑥 = 𝑥

Q: what if for all layers:
𝑓 𝑥 = 𝑎 ∗  𝑥? 

83



What are hidden units?

𝑓 𝑥 = 𝑎 ∗ 𝑏 ∗ 𝑐 ∗ 𝑑 ∗ 𝑥

?

Combination of all linear layers is still linear
We are interested in nonlinear layers

84



ReLU (Rectified Linear Unit)

𝑓 𝑥 = max(0, 𝑥) 85

Activation function



ReLU (Rectified Linear Unit)

• Dying ReLU issue

𝑓 𝑥 = max(0, 𝑥) 86

Activation function



Determining model parameters

• When to terminate GD (determining T)?
• Main factors influencing convergence rate?

• Step size (learning rate)

Image from https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html 

Step size too large

Move the point too far away
May prevent convergence
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Leaky ReLU

88



Smooth ReLU/softplus

89



Tanh

Credit for https://adl1995.github.io/an-overview-of-activation-functions-used-in-neural-
networks.html 
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LeCun’s Tanh [1]
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Sigmoid 

92



Bipolar sigmoid
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