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Core questions to answer

• What can be learned by machine learning models? 

• What conditions are required to successfully learn?
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Underlying concept function
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Underlying concept function

An underlying concept function (mapping)
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Underlying concept function

Some feature space

An underlying concept function (mapping)
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Underlying concept function

Some feature space

An underlying concept function (mapping)

or
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Underlying concept function

Size 
# bedrooms 

Yard  
……

A model Price?

Features 

Some feature space

An underlying concept function (mapping)

or

Image from https://www.rockpapershotgun.com/minecraft-house-ideas 
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Underlying concept function

Size 
Color 
Fur 
……

A model Husky?

Features 

Some feature space

An underlying concept function (mapping)

or
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Underlying concept function

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time 

Color
Shape

Yellow spot
……

A model Sweet?

Features 

Some feature space

An underlying concept function (mapping)

or
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Underlying concept function

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time 
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An underlying concept function (mapping)
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Q: how to measure the 
model’s performance?
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Underlying concept function

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time 
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A model Sweet?

Features 

Some feature space

An underlying concept function (mapping)

or

Q: how to measure the 
model’s performance?
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Q: What if our model has 
completely different 
behavior with the underlying 
concept function?

https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time


Underlying concept function

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time 

Color
Shape

Yellow spot
……

A model Sweet?

Features 

Some feature space

An underlying concept function (mapping)

or

Q: how to measure the 
model’s performance?
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Q: What if our model has 
identical behavior with the 
underlying concept function?

https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time


Risk

A hypothesis class
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Risk

A hypothesis class

Risk: in population level
→

scan all samples in the world 
(not feasible in general)
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Risk

A hypothesis class

Risk: in population level
→

scan all samples in the world 
(not feasible in general)
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Q: What is it?



Review: Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

or

A linear function

𝑦 =  𝑎𝑥 + 𝑏

𝑥 − 𝑥0
2

𝑎
+

𝑦 − 𝑦0
2

𝑏
= 1

A hypothesis class

Another hypothesis class

Q: what are their parameters?

Try to separate two classes

Q: how to separate them?
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https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/


Risk

A hypothesis class

Risk: in population level
→

scan all samples in the world 
(not feasible in general)
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Q: What is it?

Expected mistakes that ℎ 
makes over data distribution 𝐷



PAC learning
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PAC learning
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PAC learning
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Probably
Approximately Correct



PAC learning

Polynomial:
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PAC learning

Polynomial:

𝑚 → 𝑆 → ℎ𝑆
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Underlying concept function

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time 

Color
Shape

Yellow spot
……

A model Sweet?

Features 

Some feature space

An underlying concept function (mapping)

or

Q: how to measure the 
model’s performance?

A new Q: with almost the same 
features, can we guarantee the 
prediction (sweetness)?
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Underlying concept function

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time 
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An underlying concept function (mapping)

or

Q: how to measure the 
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features, can we guarantee the 
prediction (sweetness)?
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Nearly the same color/shape/…
→

Different sweetness?

https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time


Agnostic PAC learning
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Agnostic PAC learning

c(x) is deterministic stochastic: joint distribution D
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Agnostic PAC learning

c(x) is deterministic stochastic: joint distribution D
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Bayes error

All possible hypotheses
(may not be included in H)
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Bayes error

All possible hypotheses
(may not be included in H)
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The best risk we may reach



Estimation and approximation
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Estimation and approximation
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Estimation and approximation

32



Estimation and approximation

Estimation error

Approximation error
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Estimation and approximation

Estimation error

Approximation error
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Q: can we enlarge H?



Estimation and approximation
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Estimation and approximation
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· When H is very rich:
ℎ∗ = ℎ𝐵𝑎𝑦𝑒𝑠

(Approximation error = 0)



Estimation and approximation
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· When H is very rich:
ℎ∗ = ℎ𝐵𝑎𝑦𝑒𝑠

(Approximation error = 0)

· H is so rich that it is    
very hard to make: 

𝑅 ℎ →



Trade-off: estimation and approximation
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Trade-off: estimation and approximation
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Q: how to control the richness of H?



Constrained problem

=
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Regularized problem

=
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Regularized problem

=

Equivalence between (CP) and (RP):
𝜆→ 𝑏
We can find a 𝑏 given 𝜆 such that:
Corresponding optimal solutions of (CP) and (RP) are identical
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Empirical risk

Training set

Interpret: average mistakes a hypothesis h makes on a sample
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Empirical risk

Training set

Interpret: average mistakes a hypothesis h makes on a sample
stochastic version

risk (in population): not accessible
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Empirical risk minimization

Empirical risk
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Empirical risk minimization

Empirical risk

46

Controlled by 
constraints/regularization

Q: How to control?

Plug in



Empirical risk minimization

Empirical risk

47= 𝑂( 1/𝑚)

Controlled by 
constraints/regularization

Q: How to control?

Plug in
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