ML Basics

CPT_S 434/534 Neural network design and application



Course overview

Machine learning foundations
Deep learning foundations

\ 4

Machine learning

Deep Iearmng Computer vision

Convolutional neural networks
Recurrent neural networks
Graph neural networks
Generative adversarial networks
Neural architecture search

Natural language
processing
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Deep learning? What is learning?
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Future data

Past data



Husky vs Malamute

How to differentiate two breeds of dogs?



Husky vs Malamute

How to differentiate two breeds of dogs?

]

Hair length?



Husky vs Malamute

How to differentiate two breeds of dogs?

Face markings?



Husky vs Malamute

How to differentiate two breeds of dogs?

Size?




Husky vs Malamute

Alaskan Malamute Siberian Husky

20-25 inches tall 20-22 inches tall

85-100lbs 35-60Ibs
L ) s
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How to differentiate two breeds of dogs?

Size?

Data from https://www.perfectdogbreeds.com/malamute-vs-husky/
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Deep learning? What is learning?

Q: can we specify those key components?
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Past data
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Machine learning paradigm

Prediction on future data
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_____________________________________

Task: prediction/decision
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(pre-defined setting)

_____________________________________

Past data: features
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Machine learning paradigm
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Task: prediction/decision
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(pre-defined setting)

_____________________________________

Past data: features

Q: How to choose/generate useful features? >




Machine learning paradigm
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Q: How to determine this model?
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Task: prediction/decision

pmmmm—————

(pre-defined setting)

_____________________________________

Past data: features

Q: How to choose/generate useful features? .




Machine learning paradigm

( Learning 1

Prediction on future data

L model J

Q: How to determine this model?

Past data: features

pmmmm—————

__________________ groememenemeaeanas

Q: How to choose/generate useful features?

Task: prediction/decision

(pre-defined setting)

In practice:
We first inspect what TASK it is
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Pre-defined problem settings (by task

e Classification: traffic sign recognition

Regulatory Signs
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Pre-defined problem settings (by task)

e Classification: traffic sign recognition

A use example: autonomous driving system

16



Pre-defined problem settings (by task)

* Classification: camera translate app

17
Image from https://petapixel.com/2015/01/14/googles-translate-app-can-now-use-camera-translate-world-real-time/
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Pre-defined problem settings (by task)

* Prediction vs decision making Regression:
Number of Daily Confirmed Cases in Washington Real-valued outputs
Daily Confirmed === Daily Confirmed (7-day average) Daily Confirmed (projected)
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The projections are based on the actual numbers up to 1/10/21
. i 18
Retrieved from https://covid19.uclaml.org/
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Pre-defined problem settings (by task)

* Prediction vs decision making Regression:
Zestimate history Real-valued outputs
— This home —— Denny - Blaine .- Seattle
NA NA NA
$15M
$10M
$5M
""""""""""""""""""""""""""""""""""""""""""""""""""" Forecas
| 2012 2014 2016 2018 2020 |
|
No trade

19
Screen-print from zillow.com



Pre-defined problem settings (by task)

* Prediction vs decision making

40 Google DeepMind

Challenge Match
8 -5 March 20%

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3

27 MAY 2017

Y AlphaGo  Ke Jie

Winner of Match 3

RESULT B +Res
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Pre-defined problem settings (by task)

* Prediction vs decision making
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Machine learning paradigm

( Learning 1

Prediction on future data

L model J

Q: How to determine this model?

Past data: features

pmmmm—————

__________________ groememenemeaeanas

Q: How to choose/generate useful features?

Task: prediction/decision

(pre-defined setting)

In practice:
We first inspect what TASK it is
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Pre-defined problem settings (by label info)

e Supervised learning

Complete label information: supervised learning
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Pre-defined problem settings (by label info)

* Non-supervised learning?
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Labeled and unlabeled data: semi-supervised learning
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Pre-defined problem settings (by label info)

* Non-supervised learning?
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Unlabeled data: unsupervised learning
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Pre-defined problem settings (by label info)

* Unsupervised learning

Raw data

ME2NA

Classification task:

dirjaga

Finite types of outputs

S 121 0] (o[-
gjopiis

60K images (size 28%28)

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at

https://github.com/wangshusen/Deeplearning /blob/master/Slides/1 ML Basics.pdf 26



https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf

Pre-defined problem settings (by label info)

* Unsupervised learning

Raw data
ﬂhﬂﬂ

dirjaga
S 121 0] (o[-
gjopiis

60K images (size 28%28)

2d x-y coordinate

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/Deeplearning/blob/master/Slides/1 ML Basics.pdf

Classification task:

Finite types of outputs
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Pre-defined problem settings (by label info)

* Unsupervised learning

. 2d x-y coordinate

w/ .

S 121 0] (o[-
gjopiis

60K images (size 28%28)

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/Deeplearning/blob/master/Slides/1 ML Basics.pdf

Classification task:

Finite types of outputs
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Pre-defined problem settings (by label info)

* Unsupervised learning

Raw data —— | model

. 2d x-y coordinate

Classification task:

S 121 0] (o[-
gjopiis

60K images (size 28%28)

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/Deeplearning/blob/master/Slides/1 ML Basics.pdf

Finite types of outputs

29
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Pre-defined problem settings (by label info)

* Unsupervised learning

w/ .

. 2d x-y coordinate

Classification task:
Finite types of outputs

<] 7] O] o -
AROE

60K images (size 28%28)

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/Deeplearning/blob/master/Slides/1 ML Basics.pdf
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Pre-defined problem settings (by label info)

* Unsupervised learning

. 2d x-y coordinate

w/ .

<1 7] O] o -
B

60K images (size 28%28)

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/Deeplearning/blob/master/Slides/1 ML Basics.pdf

Classification task:

Finite types of outputs

31
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Machine learning paradigm

( Learning 1

Prediction on future data

L model J

Q: How to determine this model?

Past data: features

pmmmm—————

__________________ groememenemeaeanas

Q: How to choose/generate useful features?

Task: prediction/decision

(pre-defined setting)

In practice:
We first inspect what TASK it is

32
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Features

Q: What features can we use?

Zestimate history

— This home —— Denny - Blaine .- Seattle
NA NA NA
$15M
$10M
$5M
----------------------------------------------------- Forecas
2012 2014 2016 2018 2020
|
No trade

Screen-print from zillow.com
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Feature in house price prediction

* Home characteristics: lot size, location, #bedrooms

* Unique features: hardwood floors, granite countertops or a
landscaped backyard

* On-market data: listing price, description, days on the market
e Off-market data: tax assessments, prior sales

https://www.zillow.com/z/zestimate/

34
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Feature in house price prediction

Existing physical
properties

Land size (sqgft)
#bedrooms
Zip code
Carpet (Y/N)

Description text

#bathrooms

Garage (Y/N)




Feature in house price prediction

Existing physical

properties
14234 |« Land size (sqft)
3 < #bedrooms
99163 |« Zip code
1 e Carpet (Y/N)
43214 | [
0.378 R Description text < C\:uhn;\z a feature generator for text
3 I #bathrooms
1 I Garage (Y/N)
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Feature in house price prediction

A feature or Existing physical
representation properties
14234 |« Land size (sqft)
d-dimension 3 < #bedrooms
real number 99163 |« Zip code
1 e Carpet (Y/N)
Afeature: X € Rd-‘ 4.3214 )
6.378 — Description text |« Assume:
We have a feature generator for text
an element -
belongs to a set 3 | #bathrooms
1 [ Garage (Y/N)
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Machine learning paradigm
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Task: prediction/decision

\4

Choose a type of model
Determine its parameters |

[pp——————

(pre-defined setting)

__________________ groememenemeaeanas

In practice:

\-———————

Past data: features

We first inspect what TASK it is

Q: How to choose/generate useful features? -




Build a model

Try to separate two classes

e What is a model

15 4

10 A

_10 -

-15 ~10 -5 0 5 10

39
Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

e What is a model

15 4

10 A

_10 -

-15 ~10 -5 0 5 10

40
Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

e What is a model

A linear function

41
Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes

y =ax+b Q: how to separate them?

e What is a model

A hypothesis class

A linear function

42
Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

e What is a model

15 4

10 A

An ellipse (nonlinear function)

_10 -

43
Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

* What is a model 1x—x0%  ¥—° . o O
15 - + 1 s
8
10 -
5 -
An ellipse (nonlinear function) o
Another hypothesis class

[
-5 -

[ J
_10 -
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Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

_ +h Try to separate two classes
Yy~ & Q: how to separate them?
* What is a model T x—xg2  y—yg2 - —
15 A + 1 "7

o e e e e e -

/ A hypothesis class ' 10 -

A linear function

U
1

|
: or

An ellipse (nonlinear function) ..
Another hypothesis class

_5 -

_10 .
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Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

e What is a model 1 x —x02 ¥y — y,° R
15 - + 1

o e e e e e -

/ A hypothesis class ' 10 -

A linear function

U
1

or
An ellipse (nonlinear function) .
Another hypothesisclass ~ /
_5 -
Q: what is the feature used here?
_10 -
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Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

e What is a model 1 x —x02 ¥y — y,° R
15 - + 1

o e e e e e -

/ A hypothesis class ' 10 -

A linear function

U
1

or
An ellipse (nonlinear function) .
Another hypothesisclass ~ /
_5 -
Q: what is the feature used here?
A: x-y coordinates —101

47
Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/



https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/

Build a model

Try to separate two classes

y = ax+b Q: how to separate them?
* What is a model 1x— %02 vy — o> . o O
15 - + 1 s
s e !

o e e e e e -

/ A hypothesis class ' 10 -

A linear function

U
1

or
An ellipse (nonlinear function) . o
Another hypothesisclass ~ /
_5 -
Q: what are their parameters?
_10 -

I I - I I

-15 —10 =5 0 5 10
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Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Build a model

Try to separate two classes
Q: how to separate them?

e What is a model

o e e e e e -

/ A hypothesis class .

A linear function

- -

|
: or

An ellipse (nonlinear function)
Another hypothesis class

____________________________________

Q: what are their parameters?
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Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers



Analogous to Thermometers

* Types of thermometers
e Liquid thermometers
* Dial thermometers
e Electronic thermometers

wwaw.explainthatstuff.com

Image from www.explainthatstuff.com
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Analogous to Thermometers

* Types of thermometers
e Liquid thermometers
* Dial thermometers
e Electronic thermometers

wwaw.explainthatstuff.com

Image from www.explainthatstuff.com

Mercury or alcohol
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Analogous to Thermometers

* Types of thermometers
e Liquid thermometers
* Dial thermometers
e Electronic thermometers

Mercury or alcohol

1. Expands when temperature
goes higher

2. Thermal expansion coefficients

wwaw.explainthatstuff.com

Image from www.explainthatstuff.com
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

0, W, PUTHAM.

# an&
No. 705,211. THERMOMETER, FATENTED AUG. 29, 15045,

APFLIOATION FILED OCT. L0, 1504,

©

o ol \\
@b ¥ c o “\/'%é:n \
A

1 [ i
— Sm— 10~

Hlice weew.explainthatstufl com

Image from
www.explainthatstuff.com
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Analogous to Thermometers

0. W, FUTNAM.
No. 798,211, THERMOMETER.

APFLIOATION FILED OCT. L0, 1504,

* Types of thermometers S
* Liguid thermometers -
* Dial thermometers
e Electronic thermometers

FATENTED AUG. 29, 1904,

Bimetallic strip

metal 1 - = : _
tal 2 g Wi
meta . ' o
increase of SN i
temperature | . u.
o =~
- - \m\\z:_’;gﬂ}ﬂf/
Ceurtesy US Patent & '_h-_‘_‘_m__f wwnw.explainthatstufl .com

fixed connection

Right image from
Left image from https://en.wikipedia.org/wiki/Bimetallic_strip www.explainthatstuff.com
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Analogous to Thermometers

0. W, FUTNAM.
No. 798,211, THERMOMETER.

APFLIOATION FILED OCT. L0, 1504,

©

FATENTED AUG. 29, 1904,

* Types of thermometers
* Liguid thermometers
* Dial thermometers
e Electronic thermometers

Bimetallic strip
VAN i
9“@ Y i ul. &

metal 1
metal 2 . j
increase of
temperature B . |
RN
& -

fixed connection

—

el e weew.explainthatstufi.com

1. Metal 1 expands faster than metal 2 when heating
2. Convert to temperature difference
by thermal expansion coefficients

Right image from
Left image from https://en.wikipedia.org/wiki/Bimetallic_strip www.explainthatstuff.com
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Analogous to Thermometers

* Types of thermometers '

* Liquid thermometers
e Dial thermometers
e Electronic thermometers

Image from www.explainthatstuff.com

www.explainthatstuff.com
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

www.explainthatstuff.com

1. Read voltage across its metal probe
2. Measure how much current flow through it and the resistance
3. Convert resistance into a measurement of temperature

Image from www.explainthatstuff.com o8
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

—
)

Input signals

\_/

\ 4

Estimation mechanism

T
)

Output signals

u
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

— >

How much

expansion
p/

\ 4

Thermal expansion
coefficients

— >

Y

Temperature

p/
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

—
)

Voltage flow

w

\ 4

Conversion from
voltage flow
(resistance) to
temperature

T
)

Y

Temperature

¥/
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

—————————————————————————————————————————————————————————————————————————————————————————

— o . —
~ @@~ Estimation mechanism: S
| Reasonable model - |

Input signals i + | Output signals
- accurate parameters ) i

N e o o o e e = e e = e e e e e e e e - - - —

Analogous to machine learning paradigm
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Analogous to Thermometers

* Types of thermometers
* Liquid thermometers
* Dial thermometers
* Electronic thermometers

— Estimation mechanism: A
| |Reasonable model .
Input signals i + | Output signals
- accurate parameters -

Machine learning learns these parameters
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