Attention and Transformers

Neural Networks Design And Application
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Seqg2seq model performance

BLEU

Seq2Seq without attention

sequence length

[ 1 > (# words)
20 words 50 words

| like this town very much. | started my undergraduate study in 2020 and my major is computer science. | like
programming and reading. | usually get up at 7AM and do some exercise. | also go fishing at weekend. | grew up in
France. | spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a
motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or
simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the
outdoors was where | spent my childhood and | cannot be more appreciative of it. | speak fluent French.
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Input-output correlation

Decoder RNN (target language: French)

I accord sur la zone eéconomigque européenne a été signé en aolt 1992

<end>
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the agreement on the European Economic Area was signed in August 1992 <end>

Encoder RNN (source language: English)
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Input-output correlation

Decoder RNN (target language: French)

| accord sur la zone eéconomique européennel a été signé en ao(t 1992 <end>
| | I ] | | [ | 1 l | I
Br— B— | B—| B — - Br— B —||B— B B > | B B » B r— B — B
—— p— | |
\\_‘ . /,
== | |
| \ [ !
. 1 | l I
Ale—| Ale—| A|l—=| A |ll—=]| A |—=]| A | —| A |le—=| A|le—=| A|l—=| A|l—=| A|—=| A |—=]| A
[ I [ [ I I | I | | | 1 I I
the agreement on the European Economic Area was signed in August 1992 . <end>

Encoder RrN (source language: English)

part-part relation
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Encoder-decoder

Q: can we create information flow
between encoder and decoder nodes?

Encoder

[
-~
/ N\
- |
\ /
\_/

DO

16



Encoder-decoder

Q: can we create information flow
between encoder and decoder nodes?
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Attention mechanism
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— e e o o O e e E e e o oy,

Encoder RNN

e e e e AT R e e e e :l/‘so E sl St :
f h, h, h, h, \LI ! :
| I | -
| A—A—A A D e I ’
N A A A oo _ 7/ x! X!
T L 1 ‘

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Last hidden state ~ Context feature
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Attention mechanism
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Attention mechanism

Context feature

Last hidden state

Decoder RNN
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No direct connection between hidden states of encoder and decoder

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism
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Attention mechanism

context features
weights

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf ”
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Attention mechanism

How to use the two variables to build information flow?
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Attention mechanism

Weight: «; = align(h;, s,).
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Attention mechanism

WEight: a; hi,So).

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: a; hi'SO)'

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s,).
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Trainable parameters

Then normalize @, -+, &,,, (so that they sum to 1):

lay, -+, @] = Softmax ([@y, -+, @ ]).

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s,).

concatenate
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Trainable parameters

—— s,

Then normalize @, -+, &,,, (so that they sum to 1):

lay, -+, @] = Softmax ([@y, -+, @ ]).

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s,).

Linear model
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Trainable parameters

Then normalize @, -+, &,,, (so that they sum to 1):

lay, -+, @] = Softmax ([@y, -+, @ ]).

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s,).
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Attention mechanism
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Then normalize @, -+, &,,, (so that they sum to 1):

lay, -+, @] = Softmax ([@y, -+, @ ]).
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Attention mechanism

Weight: «; = align(h;, s;).

Linear mapping

— _.—/,,hl

T
— Sy

l l

o — =

N/

Trainable parameters

&
Il

Then normalize @, -, @,, (so that they sum to 1):

(a1, -+, @] = Softmax ([@, -, @p]). |

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s;).
Context vector: = ahy + -+ a,h,,.

weights

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s;).
Context vector: = ahy + -+ a,h,,.

weights

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism

Weight: «; = align(h;, s;).
Context vector: = ahy + -+ a,h,,.
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Attention mechanism

Weight: «; = align(h;, s,). Q: should we use different a’s
Context vector: = ahy + -+ aph,,. for different c;?
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Attention mechanism
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. . T In the original paper
Attention mechanism .t
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. . T In the original paper
Attention mechanism .t

i=1

Weight: a; = align(h;, s,). Q: should we use different a’s

Context vector: = a;h; + -+ ayhy,. for different ¢, ?
Different a’s. Why?

weights

Weighted average of
previous hidden features

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf 43
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Attention mechanism
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Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Attention mechanism
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Attention mechanism

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN_8.pdf
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Input-output correlation

Decoder RNN (target language: French)

I accord sur la zone eéconomigque européenne a été signé en aolt 1992

<end>
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the agreement on the European Economic Area was signed in August 1992 <end>

Encoder RNN (source language: English)

47



Input-output correlation

Decoder RNN (target language: French)

I accord sur la zone eéconomigque européenne a été signeé en aolt 1992 : <end>
I l 'I I ] l | l I I I i i
B—|B—|BFH—| B | Br+—|B+—| B FH—|B B B B—| B+ — B
] 1 I ] ! '

1
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the agreement on the European Economic Area was signed in August 1992 . <end>

Encoder RNN (source language: English)

Q: can we build attention mechanism in a single RNN (e.g., the encoder)?



Self-attention (intra-attention)

SimpleRNN:
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Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)

SimpleRNN + Self-Attention:

X1
h, = tanh (A . [Co] + b)
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Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)
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Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)

Weights: a; = align(h;, h,).

- o o o o

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)

Weighted average

Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)
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Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)
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Image from https://github.com/wangshusen/DeepLearning/blob/master/Slides/9 RNN 9.pdf
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Self-attention (intra-attention)

The

e FBI

The BBI is

The BFBI # chasing
The FBI is chasing a

The FBI i8 chasing
The FBI is chasing

a criminal

a
The FBI # chasing a criminal em the

a

a

criminal on

The BBI is chasing
The FBI is chasing

criminal em the run

criminal on the rman .

Figure is from the paper “ Long Short-Term Memory-Networks for Machine Reading.”

Pay attention to the context relevant to the new input
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Seqg2seq model performance

Seq2Seq with attention

BLEU

Seq2Seq without attention

20 words 50 words
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Can we handle
even longer?
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Transformer networks
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Figure 1: The Transformer - model architecture.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and lllia Polosukhin. "Attention is all you
need." arXiv preprint arXiv:1706.03762 (201?3.
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Transformer networks

Multi-Head Attention

t

Linear

1

Concat

A

Scaled Dot-Product

2

Attention
B A
Linear J Linear L} Linear ,]
V K Q

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and lllia Polosukhin. "Attention is all you
need." arXiv preprint arXiv:1706.03762 (201?5.



Transformer networks

Multi-Head Attention
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Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
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Al products based on Transformers

& GitHub Copilot

The world’s most widely

ChatGPT adopted Al developer tool

Get started with GitHub Copilot >

GITHUB COPILOT: CHAT @ parse_expenses.py X addresses.rb B sentiments.ts

@ monalisa rt datetime

T JUST FEEL SO
EMPTY INSIDE.

Write unit tests for this function f parse_expenses (exi ¢ ):
wunparse the list of and return the list of triples (date, amount, currency

GitHub Copilot

unittest

datetime

expenses = []

r line expenses_string.splitlines():
ring), if line.startswith("#"):
date, value, currency = line.split (" ")
expenses.append((datetime.datetime.strptime (date, "%
at (value),
se_expenses (expenses_string), currency))

enses_with_empty_input(

expenses

.main() expenses_data

The code assumes that the datetime module is imported. The test
cases cover different scenarios such as valid input, empty input, input
with comments, invalid date format, and invalid value format.
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