
Sequence Data and 
Recurrent Neural Networks

Neural Networks Design And Application
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Convolutional neural networks
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Convolutional neural networks

Each data is independent

5



Some data may not be independent

6



Some data may not be independent

7



Some data may not be independent

A demo video of YOLOv3 from https://pjreddie.com/darknet/yolo/ 
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https://www.youtube.com/watch?v=MPU2HistivI&feature=youtu.be
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Limitations of FC nets and CNNs

Image data: a single sample

Q: what if video data (e.g., 
60 frame per second)?

Video data: multiple frames per second

Frames are independent with each other

Video data: multiple 
frames per second

Frames are dependent 
with each other

Q: independent?Q: independent?
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Limitations of FC nets and CNNs

Image (input) level → No interaction

Feature map level → Interaction 

Many images (frames) to 
generate a single output

→
Allow classification 
on sequence dataPrevious Current
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Recurrent networks

No output
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Recurrent networks

equivalent

ℎ  𝑓(𝑥)

ℎ(𝑡)
 𝑓(𝑥(𝑡), ℎ(𝑡−1))
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Recurrent networks

equivalent

ℎ  𝑓(𝑥)
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Recurrent networks

Output 

Loss function

Groundtruth label

Q: how to describe 
this structure?

36



Recurrent networks
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Recurrent networks
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Recurrent networks
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Recurrent networks

Only one output: summary of a sequence

(Predict a label for a video)
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Recurrent neural networks

Vanilla 
CNNs
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Recurrent neural networks

Vanilla 
CNNs

Output 

Input 

Conv layers
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Recurrent neural networks

Video data: multiple  frames per second

Vanilla 
CNNs
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Recurrent neural networks

Video data: multiple  frames per second

Vanilla 
CNNs

Action recognition

Independently 
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Recurrent neural networks in practice

Q: what is the action?

Running or opening a door?

Image credit: Boston dynamics

Action recognition: 
predict a label from given multiple frames
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Recurrent neural networks

Video data: multiple  frames per second Video data: multiple 
frames per second

Vanilla 
CNNs

Action recognition

Q: what application?
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Recurrent neural networks in practice
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Run
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Recurrent neural networks in practice
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Recurrent neural networks in practice

Q: what is the action?

Runni
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Recurrent neural networks in practice

Q: what is the action?

Runnin
Image credit: Boston dynamics
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Recurrent neural networks in practice

Q: what is the action?

Running
Image credit: Boston dynamics
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Recurrent neural networks in practice

Q: what is the action?

Running Sequence data
Image credit: Boston dynamics
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Recurrent neural networks in practice

Q: what is the action?

Opening a door

Image credit: Boston dynamics
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Recurrent neural networks in practice

Q: what is the action?

Opening a door
Video captioning:
Generate captions

Image credit: Boston dynamics
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Recurrent neural networks

What real applications?
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Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128-3137. 2015.
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Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128-3137. 2015.
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Recurrent neural networks

Q: what application?

What’s the key?
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Recurrent neural networks
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Internal states
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Recurrent neural networks

Internal states (features)
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Recurrent neural networks

Internal states
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Recurrent neural networks
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Recurrent neural networks

ℎ𝑡−1

𝑥𝑡
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Recurrent neural networks

W * 
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Recurrent neural networks

W * 
ℎ𝑡−1

𝑥𝑡
ℎ𝑡 = 𝑓

𝑓 = tanh(·)
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Recurrent neural networks
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Share W
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RNNs for language model

• Guess the word:
• hello

• network

• language 

• Sequence data: predict the next value
• neural

• network
Information flow
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Character-level language model

• Vocabulary: {a, b, …, z}

• Given a sequence of character:
• hellx → hello

• mornixx → morning

• languaxx → language

• neurxx → neural

• netwxxx → network

• …
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Character-level language model

• Vocabulary: {h, e, l, o}
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 
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Character-level language model

• Vocabulary: {h, e, l, o}
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 

character features
(one-hot encode)
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Character-level language model

• Vocabulary: {h, e, l, o}
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0
0
0

e → 

0
1
0
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l → 

0
0
1
0
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Character-level language model
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1
0
0
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e → 

0
1
0
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l → 

0
0
1
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?
?
?
?
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 
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Character-level language model
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Character-level language model
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 

probability
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 

Q: How to compute loss?
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Character-level language model
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character features
(one-hot encode)

Q: How to compute loss?
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Character-level language model

• Vocabulary: {h, e, l, o}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 
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Word-level language model

• Vocabulary: {h, e, l, o} → {ant, and, …, network, …, zoo}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 
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Word-level language model

• Vocabulary: {h, e, l, o} → {ant, and, …, network, …, zoo}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 

Character→Word 
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Word-level language model

• Vocabulary: {h, e, l, o} → {ant, and, …, network, …, zoo}

Image from http://cs231n.stanford.edu/slides/2020/lecture_10.pdf 

Character → Word 
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Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128-3137. 2015.
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Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128-3137. 2015.
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Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128-3137. 2015.

from a vocabulary
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Short-term dependence

the clouds are in the ???
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the clouds are in the
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Short-term dependence

the clouds are in the sky

the clouds are in the
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Long-term dependence

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and
reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France. 
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Long-term dependence

I spent my childhood outdoors. 
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Long-term dependence

Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, 
making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, 
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Long-term dependence

or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, 
the outdoors was where I spent my childhood and I cannot be more appreciative of it.
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I speak fluent ???.
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Long-term dependence

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and
reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France. 
I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, 
making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on 
the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where 
I spent my childhood and I cannot be more appreciative of it.
I speak fluent French.
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Long-term dependence

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and
reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France. 
I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, 
making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on 
the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where 
I spent my childhood and I cannot be more appreciative of it.
I speak fluent French.

Long-term
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