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Overview: sorting methods
Sorting 

WSU

• Comparison based sorting
• O(n^2) methods

• e.g., insertion sort, bubble sort

• Average time O(n log(n)) methods
• e.g., quick sort

• O(n log(n)) methods
• e.g., merge sort, heap sort

• Non-comparison-based sorting
• Integer sorting: linear time

• e.g., counting sort

• Radix sort, bucket sort

• Stable v.s. non-stable sorting
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Insertion sort: at a give iteration
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14 17 21 34 47 19 71 22 29 41 32 8

Sorted part Unsorted part

Next element to place

: comparison

14 17 19 21 34 47 71 22 29 41 32 8

Shift sorted tail

Place element Unsorted part

Insertion sort:
Worst-case time 
complexity: Θ(n^2)
Best-case time 
complexity: Θ(n)



Divide and conquer technique
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• Input: A problem of size n

• Recursive

• At each level of recursion:

• (Divide)
• Split the problem of size n into a fixed number of sub-problems of smaller 

sizes, and solve each sub-problem recursively

• (Conquer)
• Merge the answers to the sub-problems
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Two divide and conquer sorts
Sorting 

WSU

• Mergesort
• Divide is trivial

• Merge (i.e, conquer) does all the work

• Quicksort
• Partition (i.e, Divide) does all the work

• Merge (i.e, conquer) is trivial
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14 32 8 23 4 9 19 10

14 32 8 23 4 9 19 10

14 32 8 23 4 9 19 10

14 32 8 23 4 9 19 10

14 32 8 23 4 9 10 19

8 14 23 32 4 9 10 19

4 8 9 10 14 19 23 32

Divide step: O(log(n))

Conquer step: O(log(n))

Main idea of mergesort:
• Dividing is trivial
• Merging (conquer)  is 

non-trivial

Height of a 
complete binary 
tree is log(n)



Mergesort: merge two arrays
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8 14 23 32 4 9 10 19

4 8 9 10 14 19 23 32

Input A1 Input A2

i j

1. B[k++] =Populate min{ A1[i], A2[j] }
2. Advance the minimum contributing pointer 

(either i or j)

Temporary array 
B: hold the output

k

Do you always need the temporary array B to 
store the output?
Can you do this in-place? See [1].

[1] Huang, Bing-Chao, and Michael A. Langston. "Practical in-place merging." Communications of the ACM 31, no. 3 (1988): 348-352.

Θ(n)

we assume the two input 
arrays are already sorted

In-place implementation of Mergesort 
is possible but complicated



Mergesort: analysis
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• Mergesort takes Θ(n log(n)) time

• Proof:
• Let T(n) be the time taken to merge sort n 

elements

• Time for each comparison operation: T(1) = O(1)

• Main observation: 
• To merge two sorted arrays of size n/2, it takes n  

comparisons at most.

• Therefore:
• T(n) = 2 T(n/2) + n

• Final result: T(n) = Θ(n log(n)) 
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Solving the recurrence:
T(n) = T(n/2) + T(n/2) + n
         = 2T(n/2) + n
         = 2 ( 2 T(n/4) + n/2 ) + n
         = 4T(n/4) + n + n
         = 8 T(n/8) + (1+1+1) n

         = 2𝐾 𝑇
𝑛

2𝐾 + 𝑛 𝐾

         

         = n T(1) + n * log(n)

Let 
𝑛

2𝐾 = 1



Quicksort 
Sorting 
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• Divide-and-conquer approach to sorting

• Like MergeSort, except:
• Not divide the array in half

• Partition the array-based elements being less than or greater than some 
element of the array (the pivot)

• i.e., divide phase does all the work; merge phase is trivial.

• Worst case running time O(n^2)

• Average case running time O(n log(n))

• Fastest generic sorting algorithm in practice

• Even faster if use simple sort (e.g., InsertionSort) when array becomes 
small
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Quicksort algorithm
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• QuickSort( Array: S)

1. If size of S is 0 or 1, return

2. Pivot = Pick an element v in S

3. Partition S – {v} into two disjoint groups
• S1 = {x  (S – {v}) | x < v}

• S2 = {x  (S – {v}) | x > v}

4. Return:
QuickSort(S1), v, QuickSort(S2)
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Remaining elements



Quicksort algorithm
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pivot

The small 
partition The large 

partition

Recursive quicksort 
on both partitions



Mergesort v.s. quicksort
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• Main problem with quicksort:
• Worst-case: dividing the input array into subproblems of size 1 and N-1 in the 

worst case at every recursive step 

• unlike merge sort which always divides into two halves

• Leading to O(N^2) performance

• → Need to choose pivot wisely (but efficiently)

• MergeSort is typically implemented using a temporary array (for 
merge step)
• QuickSort can partition the array “in place”
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Quicksort: picking the pivot
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• How about choosing the first element?
• What if array already or nearly sorted?

• Good for a randomly populated array

• How about choosing a random element?
• Good in practice if “truly random”

• Still possible to get some bad choices

• Requires execution of random number generator
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Quicksort: picking the pivot
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• Best choice of pivot:
• Median of array

• But median is expensive to calculate

• A practical strategy: Approximate the median
• Estimate median as the median of any three elements

• Median = median {first, middle, last}  Has been shown to reduce

• running time (comparisons) by 14%

14

8 1 4 9 0 3 5 2 7 6

1 0 3 2 4 8 9 5 7 6

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2 6 8 9 7



Quicksort: partition strategy
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• Goal of partitioning:
• i) Move all (elements < pivot) to the left of pivot

• ii) Move all (elements > pivot) to the right of pivot

• Partitioning is conceptually straightforward, but easy to do inefficiently

• One bad way:
• Do one pass to figure out how many elements should be on either side of pivot

• Then create a temp array to copy elements relative to pivot

15



Quicksort: partition strategy
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• A good strategy to do partition : do it in place

16

// Swap pivot with last element S[right]

i = left

j = (right – 1)  While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap ( pivot , S[i] )

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

  { i++; } until S[i] > pivot

  { j--; } until S[j] < pivot

  If (i < j), then swap( S[i] , S[j] )

}

Swap ( pivot , S[i] )

all operations are done in place 
of the input array (i.e., without 
creating a temporary array

Pseudo code

Designed algorithm



Quicksort: partition strategy
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• A good strategy to do partition : do it in place

17

// Swap pivot with last element S[right]

i = left

j = (right – 1)  While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap ( pivot , S[i] )

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

  { i++; } until S[i] > pivot

  { j--; } until S[j] < pivot

  If (i < j), then swap( S[i] , S[j] )

}

Swap ( pivot , S[i] )

all operations are done in place 
of the input array (i.e., without 
creating a temporary array

Pseudo code

Designed algorithm



Quicksort: partition strategy
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• A good strategy to do partition : do it in place
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// Swap pivot with last element S[right]

i = left

j = (right – 1)  While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap ( pivot , S[i] )

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

  { i++; } until S[i] > pivot

  { j--; } until S[j] < pivot

  If (i < j), then swap( S[i] , S[j] )

}

Swap ( pivot , S[i] )

all operations are done in place 
of the input array (i.e., without 
creating a temporary array

Pseudo code

Designed algorithm



Quicksort: partition strategy
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• A good strategy to do partition : do it in place
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// Swap pivot with last element S[right]

i = left

j = (right – 1)  While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap ( pivot , S[i] )

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

  { i++; } until S[i] > pivot

  { j--; } until S[j] < pivot

  If (i < j), then swap( S[i] , S[j] )

}

Swap ( pivot , S[i] )

6 1 4 9 0 3 5 2 7 8

1 4 0 3 5 2 6 9 7 8

Pseudo code

Designed algorithm
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Pivot: 6

8: need 
to swap

2: need 
to swap



Quicksort: partition strategy
Sorting 

WSU

21

9: need 
to swap

5: need 
to swap

i > j: stop the 
while loop

Swap the 
pivot back



Quicksort: handling duplicates
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• What if all input elements are equal: 
{6, 6, 6, 6, 6, 6, 6, 6, }

• Current approach:
• { i++; } until S[i] > pivot

• { j--; } until S[j] < pivot

• What will happen?
• i will advance all the way to the right end

• j will advance all the way to the left end

• pivot will remain in the right position, 
creating the left partition to contain N-1 
elements and empty right partition

• → Worst case O(N^2) performance
22

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

  { i++; } until S[i] > pivot

  { j--; } until S[j] < pivot

  If (i < j), then swap( S[i] , S[j] )

}

Swap ( pivot , S[i] )

Biased partition



Quicksort: handling duplicates
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• A better code

• Not skip elements equal to pivot
• { i++; } until S[i] ≥ pivot

• { j--; } until S[j] ≤ pivot

• Adds some unnecessary swaps

• But results in perfect partitioning 
for array of identical elements

23

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

  { i++; } until S[i] ≥ pivot
  { j--; } until S[j] ≤ pivot
  If (i < j), then swap( S[i] , S[j] )

}

Swap ( pivot , S[i] )



Quicksort: small arrays
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• When S is small, recursive calls become expensive (overheads)

• General strategy
• When size < threshold, use a sort more efficient for small arrays (e.g., 

InsertionSort)

• Good thresholds range from 5 to 20

• Has been shown to reduce running time by 15%
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Quicksort: implementation
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Left index Right index



Quicksort: implementation
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8

L

1 4 9 6

C

3 5 2 7 0

R

6

L

1 4 9 8

C

3 5 2 7 0

R

0

L

1 4 9 8

C

3 5 2 7 6

R

0

L

1 4 9 6

C

3 5 2 7 8

R

0

L

1 4 9 7

C

3 5 2 6

P

8

R



Quicksort: implementation
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8

L

1 4 9 6

C

3 5 2 7 0

R

6

L

1 4 9 8

C

3 5 2 7 0

R

0

L

1 4 9 8

C

3 5 2 7 6

R

0

L

1 4 9 6

C

3 5 2 7 8

R

0

L

1 4 9 7

C

3 5 2 6

P

8

R

Pivot: 
median of 3

Smallest: 
at left 

largest: 
at left 
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0

i

1 4 9 7 3 5 2 6

j

8

0 1 4 9

i

7 3 5 2 6

j

8

0 1 4 9

i

7 3 5 2

j

6 8

0 1 4 2

i

7 3 5 9

j

6 8

0 1 4 2 7

i

3 5

j

9 6 8

0 1 4 2 5

i

3 7

j

9 6 8

0 1 4 2 5 3

j

7

i

9 6 8

0 1 4 2 5 3

j

6

i

9 7 8

Assign pivot as 
median of 3

Recursively 
sort partitions

Partition based 
on pivot



Quicksort: analysis
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• Let T(N) = time to quicksort N elements

• Let L = #elements in left partition

• => #elements in right partition = N-L-1

• Base: T(0) = T(1) = O(1)

• T(N) = T(L) + T(N – L – 1) + O(N)

29

Time to sort 
left partition

Time to sort 
right partition

Time to partition at 
current recursive step



Quicksort: analysis
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• Worst-case analysis: pivot is the smallest element (L=0)

• T(N) = T(0) + T(N - 1) + O(N)

                = O(1) + T(N - 1) + O(N)

                = T(N - 2) + O(N - 1) + O(N)

                = σ𝑖=1
𝑁 𝑂(𝑖)

                = O(N^2)



Quicksort: analysis
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WSU

31

• Best-case analysis: pivot is the median (L=N/2)

• T(N) = T(N/2) + T(N/2) + O(N)

                = 2T(N/2) + O(N)

                = O(N log(N))

• Average-case analysis: assuming each partition equally likely

• T(N) = 
1

𝑁
σ𝑗=0

𝑁−1 (T(j) + T(N – j – 1) + O(N))

                 = 
2

𝑁
σ𝑗=0

𝑁−1 T(j) +
1

𝑁
σ𝑗=0

𝑁−1 O(N))

              = O(N log N)

So L can be 0, 1, …, N-1 with the 
same probability (indexed by j)

All proof in 
Chapter 7.7.5



Comparison sorting algorithms
Sorting 

WSU

32

Sorting algorithm Worst-case Average-case Best-case comments

InsertionSort Θ(N2) Θ(N2) Θ(N2) Fast for small N

MergeSort Θ(N log(N)) Θ(N log(N)) Θ(N log(N)) Requires memory

HeapSort Θ(N log(N)) Θ(N log(N)) Θ(N log(N)) Large constants 
in complexity

QuickSort Θ(N2) Θ(N log(N)) Θ(N log(N)) Small constants 
in complexity



Comparison sorting algorithms
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33
Sorting benchmark: http://sortbenchmark.org/

http://sortbenchmark.org/


Lower bound on sorting
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• What is the best we can do on comparison-based sorting?

• Best worst-case sorting algorithm (so far) is O(N log(N))
• Can we do better?

• Can we prove a lower bound on the sorting problem, independent of 
the algorithm?
• For comparison sorting: we cannot do better than O(N log(N))

• Can show lower bound of Ω(N log N)

34



Lower bound on sorting
Sorting 

WSU

• A decision tree is a binary tree where:

• Each node
• lists all left-out open possibilities (for deciding)

• Path of each node
• represents a decided sorted prefix of elements

• Each branch
• represents an outcome of a particular comparison

• Each leaf
• Represents a particular ordering of the original array elements

35
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Root: all open possibilities

Internal node: all remaining 
open possibilities

Leaf: a particular ordering 

Height = (log(n!))
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Root: all open possibilities

Internal node: all remaining 
open possibilities

Leaf: a particular ordering 

Height = (log(n!))

n! leaves for 
sorting n elements
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Root: all open possibilities

Internal node: all remaining 
open possibilities

Leaf: a particular ordering 

Height = (log(n!))

n! leaves for 
sorting n elements

How to simplify it?



Decision tree for sorting 
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• The logic of any sorting algorithm that uses comparisons can be 
represented by a decision tree

• In the worst case, the number of comparisons used by the algorithm 
equals the HEIGHT OF THE  DECISION TREE

• In the average case, the number of comparisons is the average of the 
depths of all leaves

• There are n! different orderings of n elements

39



Lower bound on sorting
Sorting 

WSU

• Lemma: A binary tree with L leaves must have depth at least:
• ceil(log(L))

• Sorting’s decision tree has N! leaves  

• Theorem: Any comparison sort may
• require at least log(𝑛!) comparisons in the worst case

40



Lower bound on sorting
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• Theorem: Any comparison sort requires Ω(N log(N)) comparisons

• Proof sketch (uses Stirling’s approximation)

N! ≈ 2 N (N / e)N (1+ (1/ N ))

N! (N / e)N

log(N!)  N log N − N log e = (N log N )  log(N!)  (N log N )

log(N!) = (N log N )

41

Full proof in Chapter 7.8



Implications of the lower bound
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• Comparison-based sorting cannot be achieved in less than O(n log(n)) 
steps in the worst case

• Mergesort, Heapsort are optimal

• Quicksort is not optimal but pretty good as optimal in practice

• Insertion sort, Bubble sort are clearly sub-optimal, even in practice

42



Non-comparison-based sorting
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• Integer sorting:

• Counting sort

• Bucket sort  

• Radix sort

43

Some input properties 
allow to eliminate the 
need for comparison

E.g., sorting an employee 
database by age (integers in 
some range) of employees



Counting sort
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• Given array A[1..N], where 1 ≤ A[i] ≤ M

• Create array C of size M, where C[j] is the number of j’s in A

• Use C to place elements into new sorted array B

• Running time Θ(N+M) = Θ(N) if M = Θ(N)

44

Required input properties



Counting sort: example
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0 3 2 1 3 2 1 2 2 3

0 1 1 2 2 2 2 3 3 3

1

2

0

1

2

33

4

N=10
M=4

Input array A

1         2        3        4        5        6         7        8        9       10

1         2        3        4        5        6         7        8        9       10

Output sorted array B

Time complexity:
O(N+M)

Count array C

Elements

# of elements in 
the input array A

All elements 
between 0 and 3

Linear time: 
Does it violate the lower 
bound O(n log(n))?



Stable and nonstable sorting
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• A “stable” sorting method: 

• preserves the original input order among duplicates in the output

46

0 3 2 1 3 2 1 2 2 3

0 1 1 2 2 2 2 3 3 3



Make counting sort stable
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0 3 2 1 3 2 1 2 2 3
N=10
M=4

Input array A

1

2

0

1

2

33

4

0

1 1

2 2 2 2

3 3 3

0 1 1 2 2 2 2 3 3 3

1         2        3        4        5        6         7        8        9       10

Output sorted array B

Count array C
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• Assume N elements of A uniformly distributed over the range [0,1]

• Create M equal-sized buckets over [0,1], s.t., M≤N

• Add each element of A into appropriate bucket

• Sort each bucket internally
• Can use recursion, or

• Can use something like InsertionSort

• Return concatenation of buckets

• Average case running time Θ(N)
• assuming each bucket will contain Θ(1) elements

48



Radix sort
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• Sort N numbers, each with k bits

• E.g, input {4, 1, 0, 10, 5, 6, 1, 8}

49

4 0100 0100 0100 0000 0000 0

1 0001 0000 0000 1000 0001 1

0 0000 1010 1000 0001 0001 1

10 1010 0110 0001 0001 0100 4

5 0101 1000 0101 1010 0101 5

6 0110 0001 0001 0100 0110 6

1 0001 0101 1010 0101 1000 8

8 1000 0001 0110 0110 1010 10

LSB: 
least significant bit

sort sort sort

MSB: 
most significant bit

Convert to binary 
representation
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• What if the number of elements N do not fit in memory?

• Obviously, our existing sort algorithms are inefficient

• Each comparison potentially requires a disk access

• Once again, we want to minimize disk accesses

50

Equivalently: minimize 
# of comparison



External MergeSort
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• N = number of elements in array A[1..N] to be sorted

• M = number of elements that can fit in memory at any given time

• K = 𝑁/𝑀

51

CPU RAM

disk

M Array: A[1 … N]



External MergeSort
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1. Read in M amount of A, sort it using local sorting (e.g., quicksort), and 
write it back to disk

2. Repeat above K times until all of A processed

3. Create K input buffers and 1 output buffer, each of size r = M/(K+1)

4. Perform a K-way merge:
• Update input buffers one disk-page at a time

• Write output buffer one disk-page at a time

52

K = 𝑁/𝑀 Step 2 goes over all elements in the array: O(K M log(M))

K chunks: each sorted internally

Step 1: O(M log(M))



External MergeSort
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1. Read in M amount of A, sort it using local sorting (e.g., quicksort), and 
write it back to disk

2. Repeat above K times until all of A processed

3. Create K input buffers and 1 output buffer, each of size r = M/(K+1)

4. Perform a K-way merge:
• Update input buffers one disk-page at a time

• Write output buffer one disk-page at a time

53

O(K M log(M)) = O(N log(M))



External MergeSort
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1. Read in M amount of A, sort it using local sorting (e.g., quicksort), and 
write it back to disk

2. Repeat above K times until all of A processed

3. Create K input buffers and 1 output buffer, each of size r = M/(K+1)

4. Perform a K-way merge:
• Update input buffers one disk-page at a time

• Write output buffer one disk-page at a time

54

So that we can fit (K+1) buffers in 
the memory at the same time

K-way merge: Iteratively read r size 
of data from each disk block to 
each input buffer

MM M MM M MM M
rr r rr r rr r

Input buffers:
Total size = M-r



K-way merge 
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• r = M/(K+1) buffer size

55

……
1

rso
rt

ed

+ + +

……

…
…

1

2 r

so
rt

ed

Input buffers: 
from K chunks

log(K) stages

Time complexity

෍

𝑖=1

log(𝐾)

𝑀 = 𝑀 𝐿𝑜𝑔(𝐾)

K-way merge: 
Repeat (K+1) this 
iterations →
O((K+1) M log(K))
= O(N log(K))



External MergeSort: analysis
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• Computational time 

• T(N,M)
= O(K*M log(M)) + O((K+1)*M log(K))

= O(N log(M) + N log(K)) 

= O(N log(M))

• Disk accesses (all sequential)
• P = page size

• # of accesses = O(N/P)

56



Non-comparison-based sorting
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• Need for sorting is ubiquitous in software

• Optimizing the sort algorithm to the domain is essential

• Good general-purpose algorithms available
• QuickSort

• Optimizations continue…
• Sort benchmarks: http://sortbenchmark.org 

57

http://sortbenchmark.org/
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