
CPTS 223 Advanced Data
Structure C/C++

Sorting

1

Overview: sorting methods
Sorting

WSU

• Comparison based sorting
• O(n^2) methods

• e.g., insertion sort, bubble sort

• Average time O(n log(n)) methods
• e.g., quick sort

• O(n log(n)) methods
• e.g., merge sort, heap sort

• Non-comparison-based sorting
• Integer sorting: linear time

• e.g., counting sort

• Radix sort, bucket sort

• Stable v.s. non-stable sorting
2

Insertion sort: at a give iteration
Sorting

WSU

3

14 17 21 34 47 19 71 22 29 41 32 8

Sorted part Unsorted part

Next element to place

: comparison

14 17 19 21 34 47 71 22 29 41 32 8

Shift sorted tail

Place element Unsorted part

Insertion sort:
Worst-case time
complexity: Θ(n^2)
Best-case time
complexity: Θ(n)

Divide and conquer technique
Sorting

WSU

• Input: A problem of size n

• Recursive

• At each level of recursion:

• (Divide)
• Split the problem of size n into a fixed number of sub-problems of smaller

sizes, and solve each sub-problem recursively

• (Conquer)
• Merge the answers to the sub-problems

4

Two divide and conquer sorts
Sorting

WSU

• Mergesort
• Divide is trivial

• Merge (i.e, conquer) does all the work

• Quicksort
• Partition (i.e, Divide) does all the work

• Merge (i.e, conquer) is trivial

5

WSU

6

14 32 8 23 4 9 19 10

14 32 8 23 4 9 19 10

14 32 8 23 4 9 19 10

14 32 8 23 4 9 19 10

14 32 8 23 4 9 10 19

8 14 23 32 4 9 10 19

4 8 9 10 14 19 23 32

Divide step: O(log(n))

Conquer step: O(log(n))

Main idea of mergesort:
• Dividing is trivial
• Merging (conquer) is

non-trivial

Height of a
complete binary
tree is log(n)

Mergesort: merge two arrays
Sorting

WSU

7

8 14 23 32 4 9 10 19

4 8 9 10 14 19 23 32

Input A1 Input A2

i j

1. B[k++] =Populate min{ A1[i], A2[j] }
2. Advance the minimum contributing pointer

(either i or j)

Temporary array
B: hold the output

k

Do you always need the temporary array B to
store the output?
Can you do this in-place? See [1].

[1] Huang, Bing-Chao, and Michael A. Langston. "Practical in-place merging." Communications of the ACM 31, no. 3 (1988): 348-352.

Θ(n)

we assume the two input
arrays are already sorted

In-place implementation of Mergesort
is possible but complicated

Mergesort: analysis
Sorting

WSU

• Mergesort takes Θ(n log(n)) time

• Proof:
• Let T(n) be the time taken to merge sort n

elements

• Time for each comparison operation: T(1) = O(1)

• Main observation:
• To merge two sorted arrays of size n/2, it takes n

comparisons at most.

• Therefore:
• T(n) = 2 T(n/2) + n

• Final result: T(n) = Θ(n log(n))

8

Solving the recurrence:
T(n) = T(n/2) + T(n/2) + n
 = 2T(n/2) + n
 = 2 (2 T(n/4) + n/2) + n
 = 4T(n/4) + n + n
 = 8 T(n/8) + (1+1+1) n

 = 2𝐾 𝑇
𝑛

2𝐾 + 𝑛 𝐾

 = n T(1) + n * log(n)

Let
𝑛

2𝐾 = 1

Quicksort
Sorting

WSU

• Divide-and-conquer approach to sorting

• Like MergeSort, except:
• Not divide the array in half

• Partition the array-based elements being less than or greater than some
element of the array (the pivot)

• i.e., divide phase does all the work; merge phase is trivial.

• Worst case running time O(n^2)

• Average case running time O(n log(n))

• Fastest generic sorting algorithm in practice

• Even faster if use simple sort (e.g., InsertionSort) when array becomes
small

9

Quicksort algorithm
Sorting

WSU

• QuickSort(Array: S)

1. If size of S is 0 or 1, return

2. Pivot = Pick an element v in S

3. Partition S – {v} into two disjoint groups
• S1 = {x  (S – {v}) | x < v}

• S2 = {x  (S – {v}) | x > v}

4. Return:
QuickSort(S1), v, QuickSort(S2)

10

Remaining elements

Quicksort algorithm
Sorting

WSU

11

pivot

The small
partition The large

partition

Recursive quicksort
on both partitions

Mergesort v.s. quicksort
Sorting

WSU

• Main problem with quicksort:
• Worst-case: dividing the input array into subproblems of size 1 and N-1 in the

worst case at every recursive step

• unlike merge sort which always divides into two halves

• Leading to O(N^2) performance

• → Need to choose pivot wisely (but efficiently)

• MergeSort is typically implemented using a temporary array (for
merge step)
• QuickSort can partition the array “in place”

12

Quicksort: picking the pivot
Sorting

WSU

• How about choosing the first element?
• What if array already or nearly sorted?

• Good for a randomly populated array

• How about choosing a random element?
• Good in practice if “truly random”

• Still possible to get some bad choices

• Requires execution of random number generator

13

Quicksort: picking the pivot
Sorting

WSU

• Best choice of pivot:
• Median of array

• But median is expensive to calculate

• A practical strategy: Approximate the median
• Estimate median as the median of any three elements

• Median = median {first, middle, last} Has been shown to reduce

• running time (comparisons) by 14%

14

8 1 4 9 0 3 5 2 7 6

1 0 3 2 4 8 9 5 7 6

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2 6 8 9 7

Quicksort: partition strategy
Sorting

WSU

• Goal of partitioning:
• i) Move all (elements < pivot) to the left of pivot

• ii) Move all (elements > pivot) to the right of pivot

• Partitioning is conceptually straightforward, but easy to do inefficiently

• One bad way:
• Do one pass to figure out how many elements should be on either side of pivot

• Then create a temp array to copy elements relative to pivot

15

Quicksort: partition strategy
Sorting

WSU

• A good strategy to do partition : do it in place

16

// Swap pivot with last element S[right]

i = left

j = (right – 1) While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap (pivot , S[i])

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

 { i++; } until S[i] > pivot

 { j--; } until S[j] < pivot

 If (i < j), then swap(S[i] , S[j])

}

Swap (pivot , S[i])

all operations are done in place
of the input array (i.e., without
creating a temporary array

Pseudo code

Designed algorithm

Quicksort: partition strategy
Sorting

WSU

• A good strategy to do partition : do it in place

17

// Swap pivot with last element S[right]

i = left

j = (right – 1) While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap (pivot , S[i])

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

 { i++; } until S[i] > pivot

 { j--; } until S[j] < pivot

 If (i < j), then swap(S[i] , S[j])

}

Swap (pivot , S[i])

all operations are done in place
of the input array (i.e., without
creating a temporary array

Pseudo code

Designed algorithm

Quicksort: partition strategy
Sorting

WSU

• A good strategy to do partition : do it in place

18

// Swap pivot with last element S[right]

i = left

j = (right – 1) While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap (pivot , S[i])

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

 { i++; } until S[i] > pivot

 { j--; } until S[j] < pivot

 If (i < j), then swap(S[i] , S[j])

}

Swap (pivot , S[i])

all operations are done in place
of the input array (i.e., without
creating a temporary array

Pseudo code

Designed algorithm

Quicksort: partition strategy
Sorting

WSU

• A good strategy to do partition : do it in place

19

// Swap pivot with last element S[right]

i = left

j = (right – 1) While (i < j) {

// advance i until first element > pivot

// decrement j until first element < pivot

// swap S[i] & S[j] (only if i<j)

Swap (pivot , S[i])

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

 { i++; } until S[i] > pivot

 { j--; } until S[j] < pivot

 If (i < j), then swap(S[i] , S[j])

}

Swap (pivot , S[i])

6 1 4 9 0 3 5 2 7 8

1 4 0 3 5 2 6 9 7 8

Pseudo code

Designed algorithm

Quicksort: partition strategy
Sorting

WSU

20

Pivot: 6

8: need
to swap

2: need
to swap

Quicksort: partition strategy
Sorting

WSU

21

9: need
to swap

5: need
to swap

i > j: stop the
while loop

Swap the
pivot back

Quicksort: handling duplicates
Sorting

WSU

• What if all input elements are equal:
{6, 6, 6, 6, 6, 6, 6, 6, }

• Current approach:
• { i++; } until S[i] > pivot

• { j--; } until S[j] < pivot

• What will happen?
• i will advance all the way to the right end

• j will advance all the way to the left end

• pivot will remain in the right position,
creating the left partition to contain N-1
elements and empty right partition

• → Worst case O(N^2) performance
22

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

 { i++; } until S[i] > pivot

 { j--; } until S[j] < pivot

 If (i < j), then swap(S[i] , S[j])

}

Swap (pivot , S[i])

Biased partition

Quicksort: handling duplicates
Sorting

WSU

• A better code

• Not skip elements equal to pivot
• { i++; } until S[i] ≥ pivot

• { j--; } until S[j] ≤ pivot

• Adds some unnecessary swaps

• But results in perfect partitioning
for array of identical elements

23

Swap pivot with last element S[right]

i = left

j = (right – 1)

while (i < j) {

 { i++; } until S[i] ≥ pivot
 { j--; } until S[j] ≤ pivot
 If (i < j), then swap(S[i] , S[j])

}

Swap (pivot , S[i])

Quicksort: small arrays
Sorting

WSU

• When S is small, recursive calls become expensive (overheads)

• General strategy
• When size < threshold, use a sort more efficient for small arrays (e.g.,

InsertionSort)

• Good thresholds range from 5 to 20

• Has been shown to reduce running time by 15%

24

Quicksort: implementation
Sorting

WSU

25

Left index Right index

Quicksort: implementation
Sorting

WSU

26

8

L

1 4 9 6

C

3 5 2 7 0

R

6

L

1 4 9 8

C

3 5 2 7 0

R

0

L

1 4 9 8

C

3 5 2 7 6

R

0

L

1 4 9 6

C

3 5 2 7 8

R

0

L

1 4 9 7

C

3 5 2 6

P

8

R

Quicksort: implementation
Sorting

WSU

27

8

L

1 4 9 6

C

3 5 2 7 0

R

6

L

1 4 9 8

C

3 5 2 7 0

R

0

L

1 4 9 8

C

3 5 2 7 6

R

0

L

1 4 9 6

C

3 5 2 7 8

R

0

L

1 4 9 7

C

3 5 2 6

P

8

R

Pivot:
median of 3

Smallest:
at left

largest:
at left

WSU

28

0

i

1 4 9 7 3 5 2 6

j

8

0 1 4 9

i

7 3 5 2 6

j

8

0 1 4 9

i

7 3 5 2

j

6 8

0 1 4 2

i

7 3 5 9

j

6 8

0 1 4 2 7

i

3 5

j

9 6 8

0 1 4 2 5

i

3 7

j

9 6 8

0 1 4 2 5 3

j

7

i

9 6 8

0 1 4 2 5 3

j

6

i

9 7 8

Assign pivot as
median of 3

Recursively
sort partitions

Partition based
on pivot

Quicksort: analysis
Sorting

WSU

• Let T(N) = time to quicksort N elements

• Let L = #elements in left partition

• => #elements in right partition = N-L-1

• Base: T(0) = T(1) = O(1)

• T(N) = T(L) + T(N – L – 1) + O(N)

29

Time to sort
left partition

Time to sort
right partition

Time to partition at
current recursive step

Quicksort: analysis
Sorting

WSU

30

• Worst-case analysis: pivot is the smallest element (L=0)

• T(N) = T(0) + T(N - 1) + O(N)

 = O(1) + T(N - 1) + O(N)

 = T(N - 2) + O(N - 1) + O(N)

 = σ𝑖=1
𝑁 𝑂(𝑖)

 = O(N^2)

Quicksort: analysis
Sorting

WSU

31

• Best-case analysis: pivot is the median (L=N/2)

• T(N) = T(N/2) + T(N/2) + O(N)

 = 2T(N/2) + O(N)

 = O(N log(N))

• Average-case analysis: assuming each partition equally likely

• T(N) =
1

𝑁
σ𝑗=0

𝑁−1 (T(j) + T(N – j – 1) + O(N))

 =
2

𝑁
σ𝑗=0

𝑁−1 T(j) +
1

𝑁
σ𝑗=0

𝑁−1 O(N))

 = O(N log N)

So L can be 0, 1, …, N-1 with the
same probability (indexed by j)

All proof in
Chapter 7.7.5

Comparison sorting algorithms
Sorting

WSU

32

Sorting algorithm Worst-case Average-case Best-case comments

InsertionSort Θ(N2) Θ(N2) Θ(N2) Fast for small N

MergeSort Θ(N log(N)) Θ(N log(N)) Θ(N log(N)) Requires memory

HeapSort Θ(N log(N)) Θ(N log(N)) Θ(N log(N)) Large constants
in complexity

QuickSort Θ(N2) Θ(N log(N)) Θ(N log(N)) Small constants
in complexity

Comparison sorting algorithms
Sorting

WSU

33
Sorting benchmark: http://sortbenchmark.org/

http://sortbenchmark.org/

Lower bound on sorting
Sorting

WSU

• What is the best we can do on comparison-based sorting?

• Best worst-case sorting algorithm (so far) is O(N log(N))
• Can we do better?

• Can we prove a lower bound on the sorting problem, independent of
the algorithm?
• For comparison sorting: we cannot do better than O(N log(N))

• Can show lower bound of Ω(N log N)

34

Lower bound on sorting
Sorting

WSU

• A decision tree is a binary tree where:

• Each node
• lists all left-out open possibilities (for deciding)

• Path of each node
• represents a decided sorted prefix of elements

• Each branch
• represents an outcome of a particular comparison

• Each leaf
• Represents a particular ordering of the original array elements

35

WSU

36

Root: all open possibilities

Internal node: all remaining
open possibilities

Leaf: a particular ordering

Height = (log(n!))

WSU

37

Root: all open possibilities

Internal node: all remaining
open possibilities

Leaf: a particular ordering

Height = (log(n!))

n! leaves for
sorting n elements

WSU

38

Root: all open possibilities

Internal node: all remaining
open possibilities

Leaf: a particular ordering

Height = (log(n!))

n! leaves for
sorting n elements

How to simplify it?

Decision tree for sorting
Sorting

WSU

• The logic of any sorting algorithm that uses comparisons can be
represented by a decision tree

• In the worst case, the number of comparisons used by the algorithm
equals the HEIGHT OF THE DECISION TREE

• In the average case, the number of comparisons is the average of the
depths of all leaves

• There are n! different orderings of n elements

39

Lower bound on sorting
Sorting

WSU

• Lemma: A binary tree with L leaves must have depth at least:
• ceil(log(L))

• Sorting’s decision tree has N! leaves

• Theorem: Any comparison sort may
• require at least log(𝑛!) comparisons in the worst case

40

Lower bound on sorting
Sorting

WSU

• Theorem: Any comparison sort requires Ω(N log(N)) comparisons

• Proof sketch (uses Stirling’s approximation)

N! ≈ 2 N (N / e)N (1+ (1/ N))

N! (N / e)N

log(N!)  N log N − N log e = (N log N) log(N!)  (N log N)

log(N!) = (N log N)

41

Full proof in Chapter 7.8

Implications of the lower bound
Sorting

WSU

• Comparison-based sorting cannot be achieved in less than O(n log(n))
steps in the worst case

• Mergesort, Heapsort are optimal

• Quicksort is not optimal but pretty good as optimal in practice

• Insertion sort, Bubble sort are clearly sub-optimal, even in practice

42

Non-comparison-based sorting
Sorting

WSU

• Integer sorting:

• Counting sort

• Bucket sort

• Radix sort

43

Some input properties
allow to eliminate the
need for comparison

E.g., sorting an employee
database by age (integers in
some range) of employees

Counting sort
Sorting

WSU

• Given array A[1..N], where 1 ≤ A[i] ≤ M

• Create array C of size M, where C[j] is the number of j’s in A

• Use C to place elements into new sorted array B

• Running time Θ(N+M) = Θ(N) if M = Θ(N)

44

Required input properties

Counting sort: example
Sorting

WSU

45

0 3 2 1 3 2 1 2 2 3

0 1 1 2 2 2 2 3 3 3

1

2

0

1

2

33

4

N=10
M=4

Input array A

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Output sorted array B

Time complexity:
O(N+M)

Count array C

Elements

of elements in
the input array A

All elements
between 0 and 3

Linear time:
Does it violate the lower
bound O(n log(n))?

Stable and nonstable sorting
Sorting

WSU

• A “stable” sorting method:

• preserves the original input order among duplicates in the output

46

0 3 2 1 3 2 1 2 2 3

0 1 1 2 2 2 2 3 3 3

Make counting sort stable
Sorting

WSU

47

0 3 2 1 3 2 1 2 2 3
N=10
M=4

Input array A

1

2

0

1

2

33

4

0

1 1

2 2 2 2

3 3 3

0 1 1 2 2 2 2 3 3 3

1 2 3 4 5 6 7 8 9 10

Output sorted array B

Count array C

Bucket sort
Sorting

WSU

• Assume N elements of A uniformly distributed over the range [0,1]

• Create M equal-sized buckets over [0,1], s.t., M≤N

• Add each element of A into appropriate bucket

• Sort each bucket internally
• Can use recursion, or

• Can use something like InsertionSort

• Return concatenation of buckets

• Average case running time Θ(N)
• assuming each bucket will contain Θ(1) elements

48

Radix sort
Sorting

WSU

• Sort N numbers, each with k bits

• E.g, input {4, 1, 0, 10, 5, 6, 1, 8}

49

4 0100 0100 0100 0000 0000 0

1 0001 0000 0000 1000 0001 1

0 0000 1010 1000 0001 0001 1

10 1010 0110 0001 0001 0100 4

5 0101 1000 0101 1010 0101 5

6 0110 0001 0001 0100 0110 6

1 0001 0101 1010 0101 1000 8

8 1000 0001 0110 0110 1010 10

LSB:
least significant bit

sort sort sort

MSB:
most significant bit

Convert to binary
representation

External sorting
Sorting

WSU

• What if the number of elements N do not fit in memory?

• Obviously, our existing sort algorithms are inefficient

• Each comparison potentially requires a disk access

• Once again, we want to minimize disk accesses

50

Equivalently: minimize
of comparison

External MergeSort
Sorting

WSU

• N = number of elements in array A[1..N] to be sorted

• M = number of elements that can fit in memory at any given time

• K = 𝑁/𝑀

51

CPU RAM

disk

M Array: A[1 … N]

External MergeSort
Sorting

WSU

1. Read in M amount of A, sort it using local sorting (e.g., quicksort), and
write it back to disk

2. Repeat above K times until all of A processed

3. Create K input buffers and 1 output buffer, each of size r = M/(K+1)

4. Perform a K-way merge:
• Update input buffers one disk-page at a time

• Write output buffer one disk-page at a time

52

K = 𝑁/𝑀 Step 2 goes over all elements in the array: O(K M log(M))

K chunks: each sorted internally

Step 1: O(M log(M))

External MergeSort
Sorting

WSU

1. Read in M amount of A, sort it using local sorting (e.g., quicksort), and
write it back to disk

2. Repeat above K times until all of A processed

3. Create K input buffers and 1 output buffer, each of size r = M/(K+1)

4. Perform a K-way merge:
• Update input buffers one disk-page at a time

• Write output buffer one disk-page at a time

53

O(K M log(M)) = O(N log(M))

External MergeSort
Sorting

WSU

1. Read in M amount of A, sort it using local sorting (e.g., quicksort), and
write it back to disk

2. Repeat above K times until all of A processed

3. Create K input buffers and 1 output buffer, each of size r = M/(K+1)

4. Perform a K-way merge:
• Update input buffers one disk-page at a time

• Write output buffer one disk-page at a time

54

So that we can fit (K+1) buffers in
the memory at the same time

K-way merge: Iteratively read r size
of data from each disk block to
each input buffer

MM M MM M MM M
rr r rr r rr r

Input buffers:
Total size = M-r

K-way merge
Sorting

WSU

• r = M/(K+1) buffer size

55

……
1

rso
rt

ed

+ + +

……

…
…

1

2 r

so
rt

ed

Input buffers:
from K chunks

log(K) stages

Time complexity

෍

𝑖=1

log(𝐾)

𝑀 = 𝑀 𝐿𝑜𝑔(𝐾)

K-way merge:
Repeat (K+1) this
iterations →
O((K+1) M log(K))
= O(N log(K))

External MergeSort: analysis
Sorting

WSU

• Computational time

• T(N,M)
= O(K*M log(M)) + O((K+1)*M log(K))

= O(N log(M) + N log(K))

= O(N log(M))

• Disk accesses (all sequential)
• P = page size

• # of accesses = O(N/P)

56

Non-comparison-based sorting
Sorting

WSU

• Need for sorting is ubiquitous in software

• Optimizing the sort algorithm to the domain is essential

• Good general-purpose algorithms available
• QuickSort

• Optimizations continue…
• Sort benchmarks: http://sortbenchmark.org

57

http://sortbenchmark.org/

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview: sorting methods
	Slide 3: Insertion sort: at a give iteration
	Slide 4: Divide and conquer technique
	Slide 5: Two divide and conquer sorts
	Slide 6
	Slide 7: Mergesort: merge two arrays
	Slide 8: Mergesort: analysis
	Slide 9: Quicksort
	Slide 10: Quicksort algorithm
	Slide 11: Quicksort algorithm
	Slide 12: Mergesort v.s. quicksort
	Slide 13: Quicksort: picking the pivot
	Slide 14: Quicksort: picking the pivot
	Slide 15: Quicksort: partition strategy
	Slide 16: Quicksort: partition strategy
	Slide 17: Quicksort: partition strategy
	Slide 18: Quicksort: partition strategy
	Slide 19: Quicksort: partition strategy
	Slide 20: Quicksort: partition strategy
	Slide 21: Quicksort: partition strategy
	Slide 22: Quicksort: handling duplicates
	Slide 23: Quicksort: handling duplicates
	Slide 24: Quicksort: small arrays
	Slide 25: Quicksort: implementation
	Slide 26: Quicksort: implementation
	Slide 27: Quicksort: implementation
	Slide 28
	Slide 29: Quicksort: analysis
	Slide 30: Quicksort: analysis
	Slide 31: Quicksort: analysis
	Slide 32: Comparison sorting algorithms
	Slide 33: Comparison sorting algorithms
	Slide 34: Lower bound on sorting
	Slide 35: Lower bound on sorting
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Decision tree for sorting
	Slide 40: Lower bound on sorting
	Slide 41: Lower bound on sorting
	Slide 42: Implications of the lower bound
	Slide 43: Non-comparison-based sorting
	Slide 44: Counting sort
	Slide 45: Counting sort: example
	Slide 46: Stable and nonstable sorting
	Slide 47: Make counting sort stable
	Slide 48: Bucket sort
	Slide 49: Radix sort
	Slide 50: External sorting
	Slide 51: External MergeSort
	Slide 52: External MergeSort
	Slide 53: External MergeSort
	Slide 54: External MergeSort
	Slide 55: K-way merge
	Slide 56: External MergeSort: analysis
	Slide 57: Non-comparison-based sorting

