

CPTS 223 Advanced Data Structure C/C++

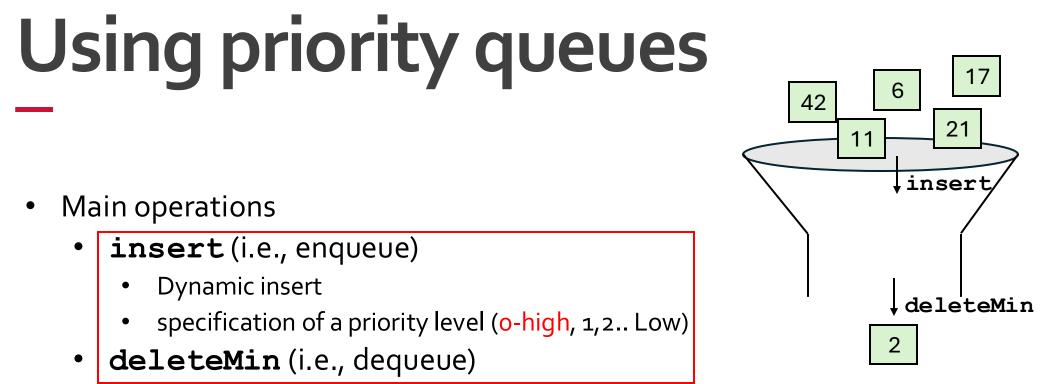
Heaps

Motivation

- **Queues** are a standard mechanism for ordering tasks on a first-come, first-served basis
- However, some tasks may be more important or timely than others (higher priority)
- Priority queues
 - Store tasks using a partial ordering based on priority
 - Ensure highest priority task at head of queue
- Heaps are the underlying data structure of priority queues

Applications

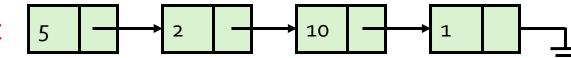
- Operating system scheduling
 - Process jobs by priority
- Graph algorithms
 - Find shortest path
- Event simulation
 - Look up next event to happen

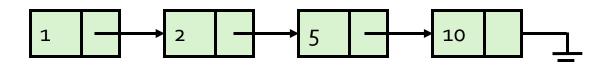


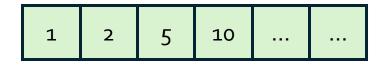
- Finds the current minimum element (read: "highest priority") in the queue, deletes it from the queue, and returns it
- Performance goal is for operations to be "fast"

Priority queues: simple options

- Unordered linked list
 - O(1) insert
 - O(n) deleteMin
- Ordered linked list
 - O(n) insert
 - O(1) deleteMin
- Ordered array
 - O(lg(n) + n) insert
 - O(n) deleteMin







Priority queues: simple options

- BST
 - Θ(lg(n)) average-case for insert and deleteMin
 - O(n) worse-case for insert and deleteMin
- Self-based BST
 - O(lg(n)) worse-case for findMin, insert and delteMin
 - Complicated implementation
 - AVL trees: height maintenance for every node
 - R-B trees: complicated implementations for many cases
 - Bottom-up procedure
 - Top-down procedure

Can we do better for

findMin and deleteMin?

Search, insert and

delete any data cost

O(lg(n)): qverkill

Time complexity per operation

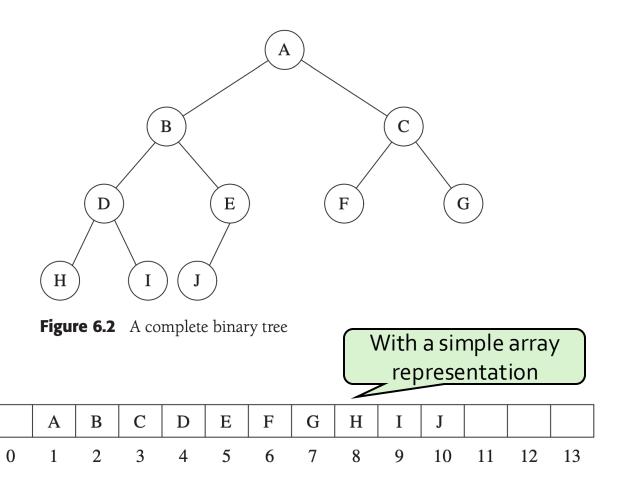
	findMin	insert	deleteMin	merge
Binary heap	O(1)	O(log(n)) worst-case O(1) amortized for buildHeap	O(log(n))	O(n)
Leftist heap	O(1)	O(log(n))	O(log(n))	O(log(n))
Skew heap	O(1)	O(log(n))	O(log(n))	O(log(n))
Binomial heap	O(1)	O(log(n)) worst-case O(1) amortized for sequence of n inserts	O(log(n))	O(log(n))
Fibonacci heap	O(1)	O(1)	O(log(n))	O(1)

Binary heap

- A binary heap is a binary tree with two properties
 - Structure property
 - Heap-order property

Binary heap: structure property

- A binary heap is a complete binary tree
 - Each level (except possibly the bottom most level) is completely filled
 - The bottom most level may be partially filled (from left to right)
- Height of a complete binary tree with N elements is [log_2(N)]



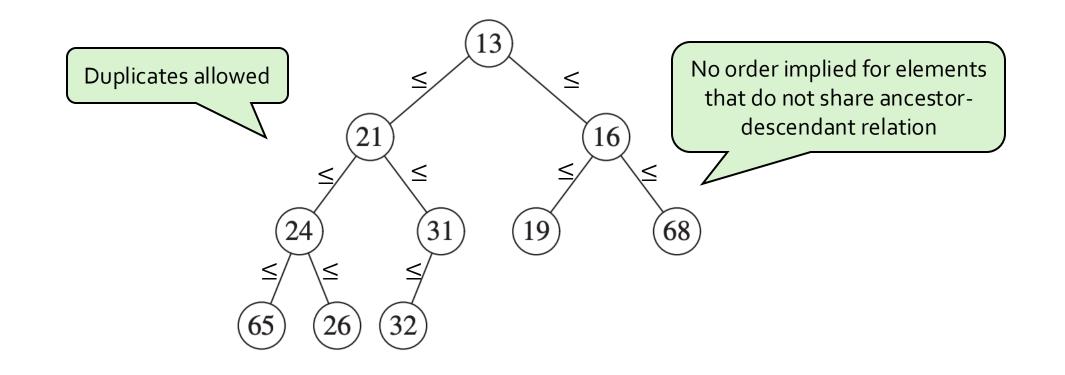
Binary heap: heap-order property

- Heap-order property (for a "MinHeap")
 - For every node X, $key(parent(X)) \le key(X)$
 - Except root node, which has no parent
- Thus, minimum key always at root
- Alternatively, for a "MaxHeap", always keep the maximum key at the root
- Insert and deleteMin must maintain heap-order property

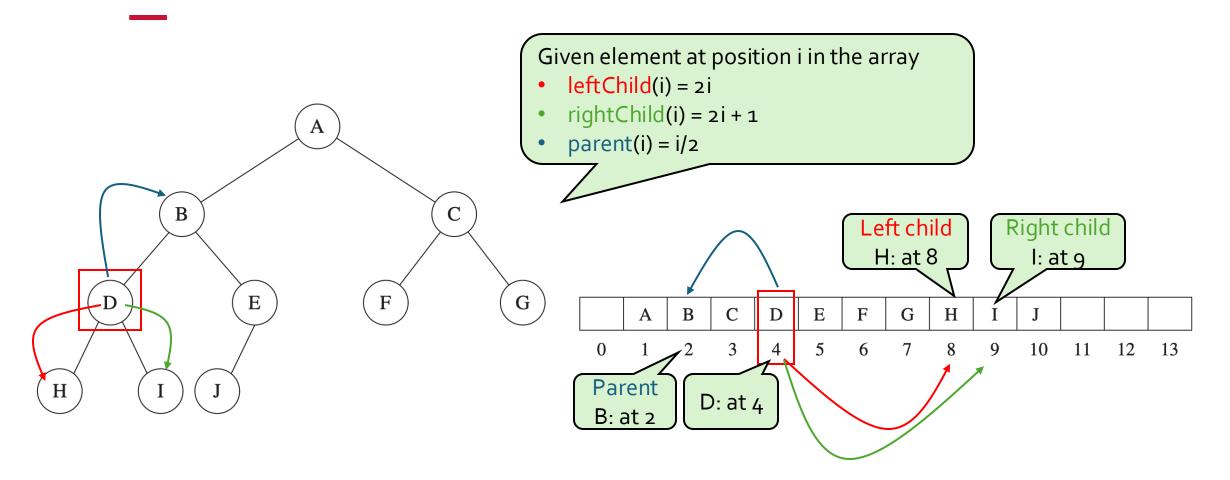
WSU

Heaps

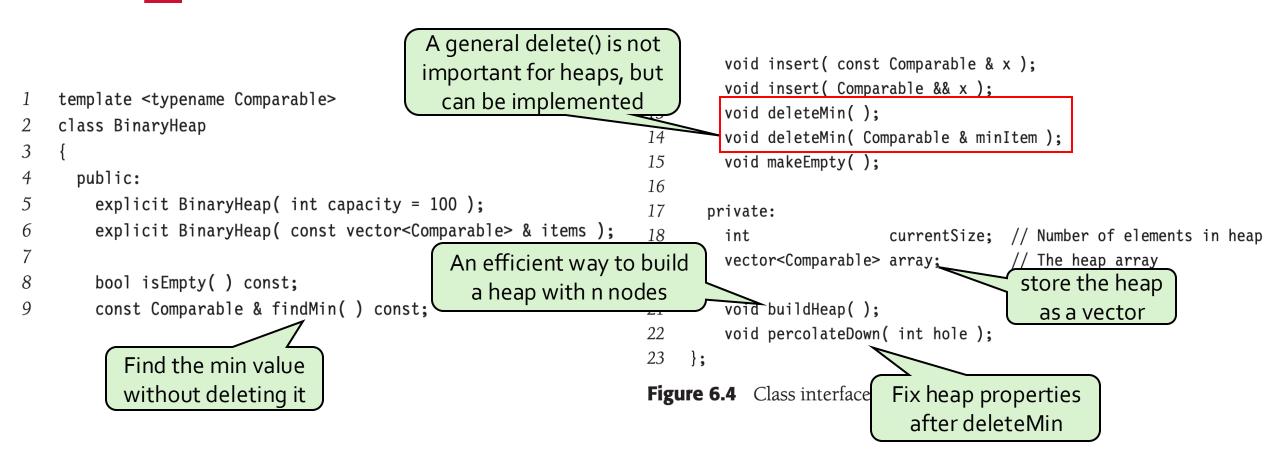
Binary heap: heap-order property



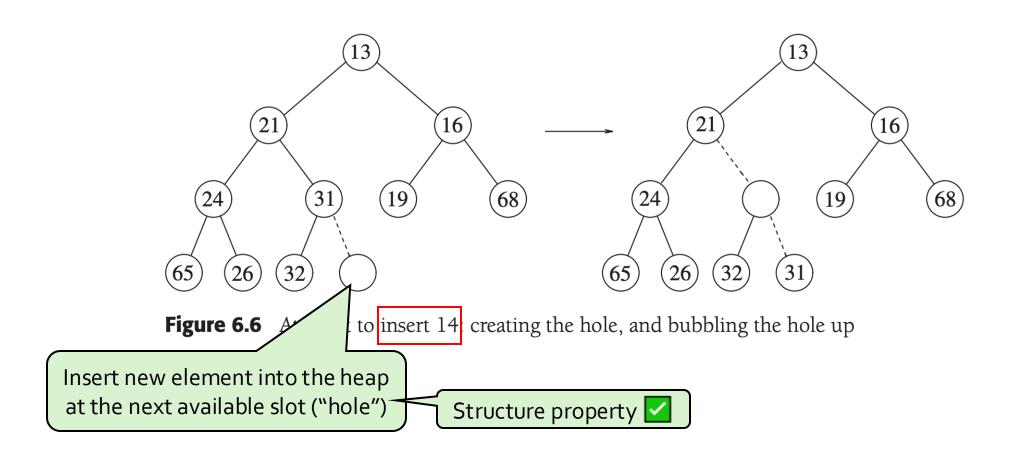
Implementation: arrays

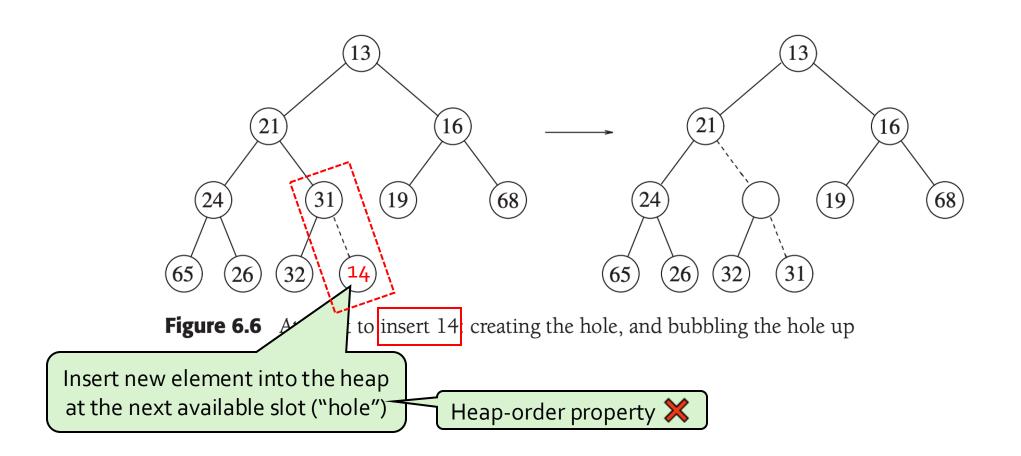


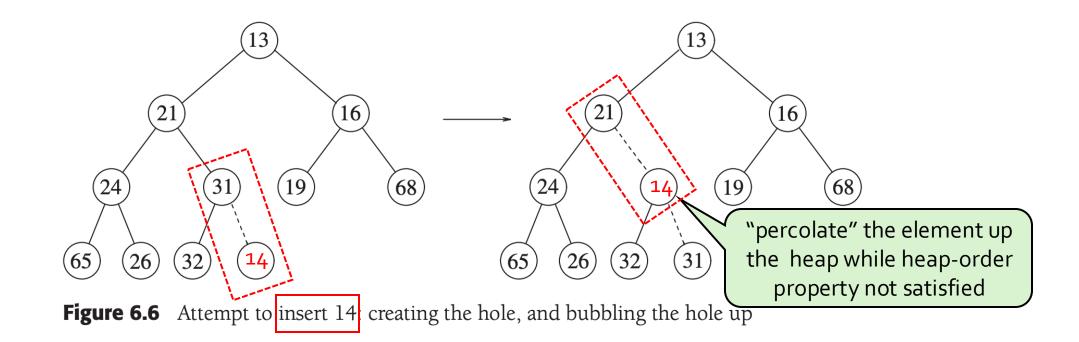
Binary heap: class interface



- Insert new element into the heap at the next available slot ("hole")
 - According to maintaining a complete binary tree
- Then, "percolate" the element up the heap while heap-order property not satisfied







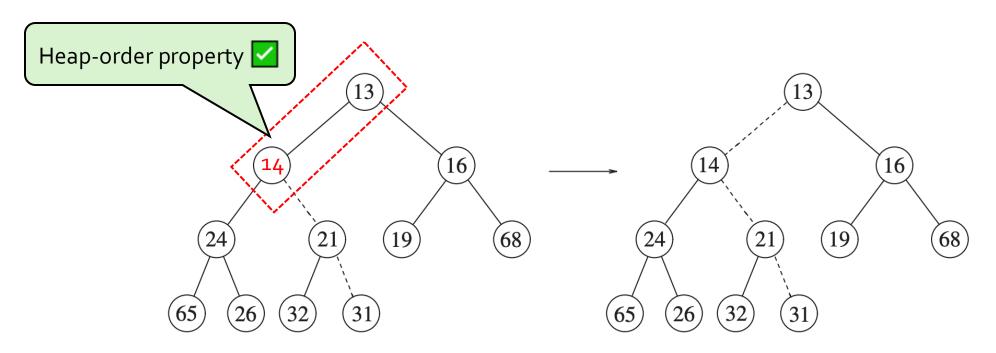


Figure 6.7 The remaining two steps to insert 14 in previous heap

Heap insert: implementation

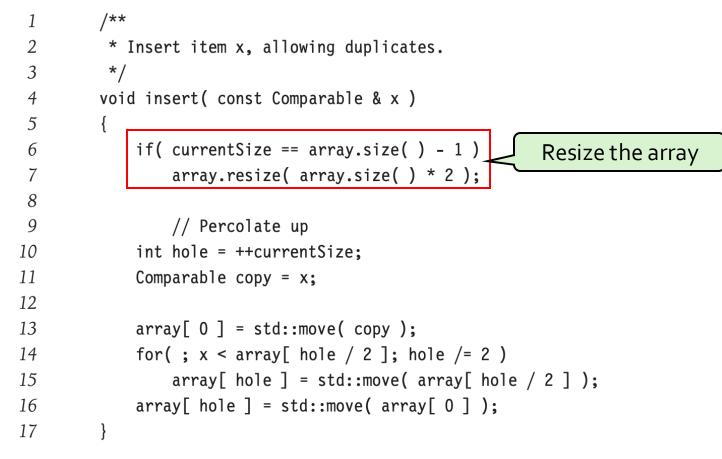


Figure 6.8 Procedure to insert into a binary heap

Heap insert: implementation

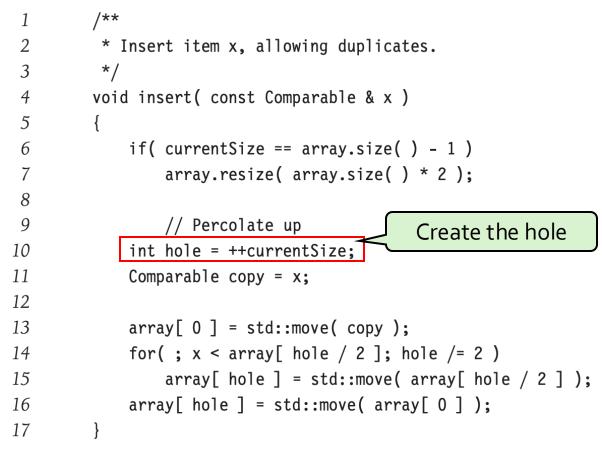


Figure 6.8 Procedure to insert into a binary heap

Heap insert: implementation

/** 1 2 * Insert item x, allowing duplicates. 3 */ 4 void insert(const Comparable & x) 5 if(currentSize == array.size() - 1) 6 array.resize(array.size() * 2); 7 8 9 // Percolate up 10 int hole = ++currentSize; Comparable copy = x; Temporary storage 13 array[0] = std::move(copy); for(; x < array[hole / 2]; hole /= 2)14 array[hole] = std::move(array[hole / 2]); 15 array[hole] = std::move(array[0]); 16 17

Figure 6.8 Procedure to insert into a binary heap

Heap insert: implementation

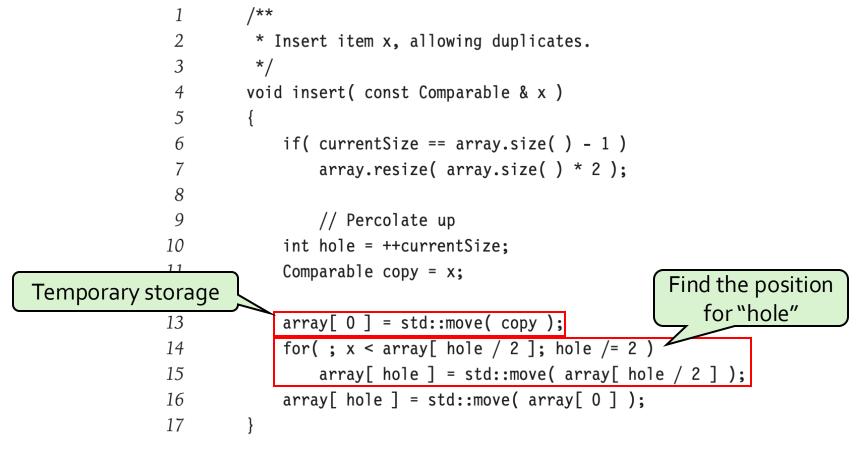


Figure 6.8 Procedure to insert into a binary heap

Heap insert: implementation

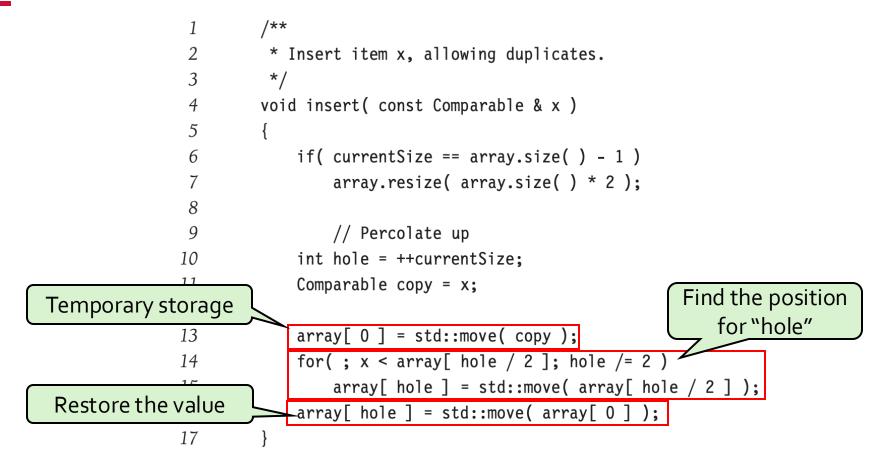


Figure 6.8 Procedure to insert into a binary heap

Heap insert: implementation

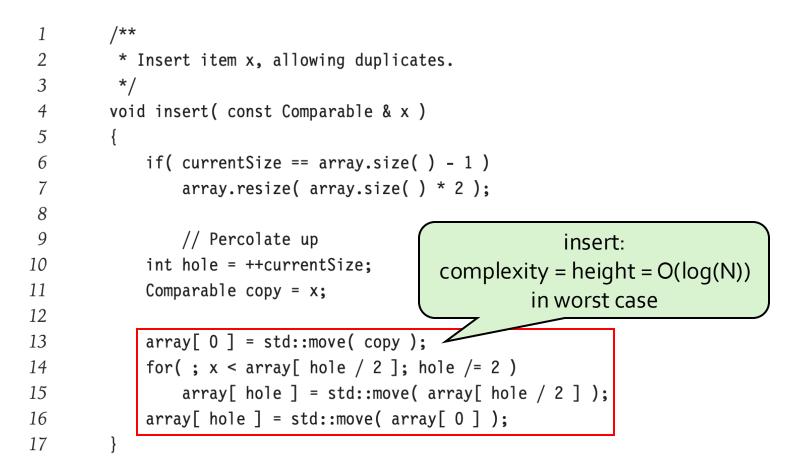
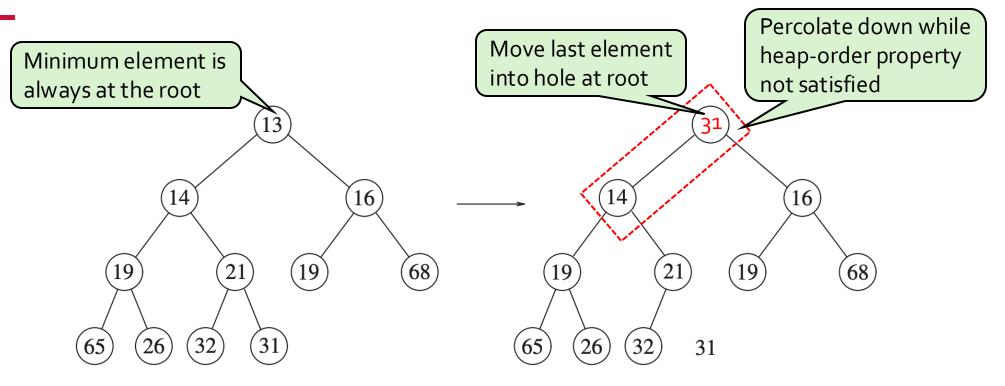


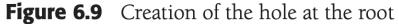
Figure 6.8 Procedure to insert into a binary heap

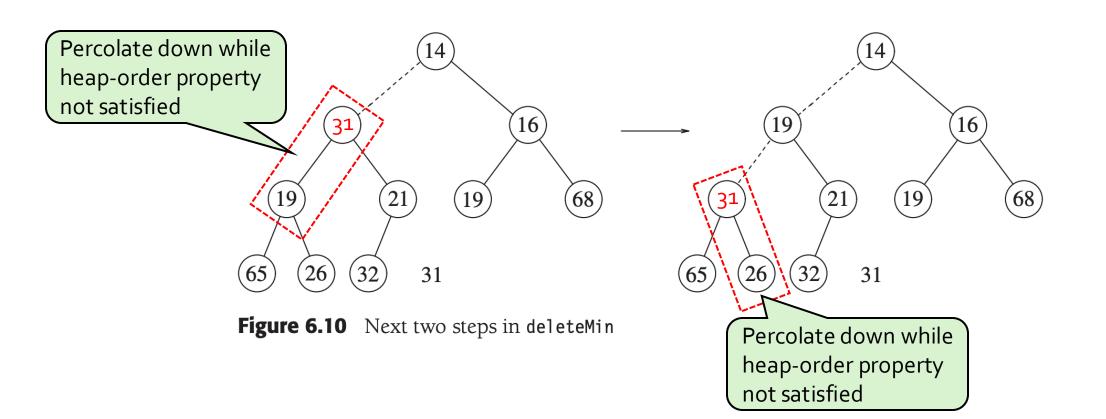
Heap deleteMin

So findMin requires O(1) in worst case

- Minimum element is always at the root
- Heap decreases by one in size
- Move last element into hole at root
- Percolate down while heap-order property not satisfied







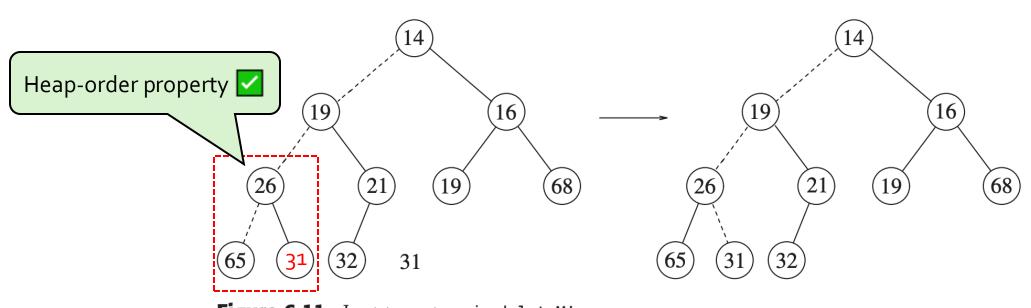


Figure 6.11 Last two steps in deleteMin

Heap deleteMin

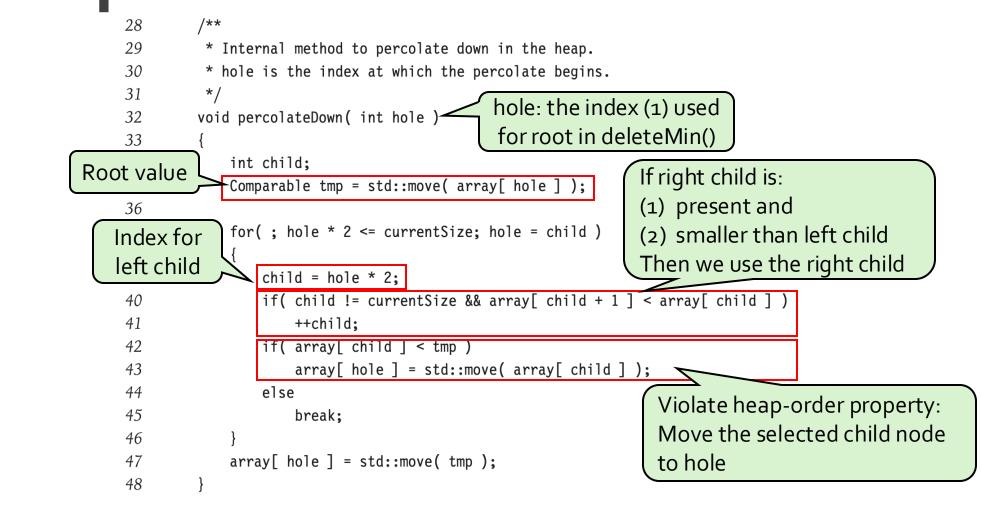
```
/**
 1
 2
          * Remove the minimum item.
 3
          * Throws UnderflowException if empty.
          */
 4
         void deleteMin( )
 5
 6
 7
             if( isEmpty( ) )
                 throw UnderflowException{ };
 8
 9
10
             array[ 1 ] = std::move( array[ currentSize-- ] );
            percolateDown( 1 );
11
12
```

```
/**
 * Remove the minimum item and place it in minItem.
 * Throws UnderflowException if empty.
 */
void deleteMin( Comparable & minItem )
{
    if( isEmpty( ) )
       throw UnderflowException{ };
    minItem = std::move( array[ 1 ] );
    array[ 1 ] = std::move( array[ currentSize-- ] );
    percolateDown( 1 );
}
```

Heap deleteMin

28	/**
29	* Internal method to percolate down in the heap.
30	* hole is the index at which the percolate begins.
31	*/
32	void percolateDown(int hole) hole: the index (1) used
33	{ for root in deleteMin()
34	int child;
35	Comparable tmp = std::move(array[hole]);
36	
37	for(; hole * 2 <= currentSize; hole = child)
38	{
39	child = hole * 2;
40	if(child != currentSize && array[child + 1] < array[child])
41	++child;
42	if(array[child] < tmp)
43	array[hole] = std::move(array[child]);
44	else
45	break;
46	}
47	array[hole] = std::move(tmp);
48	}

Figure 6.12 Method to perform deleteMin in a binary heap



Heap deleteMin

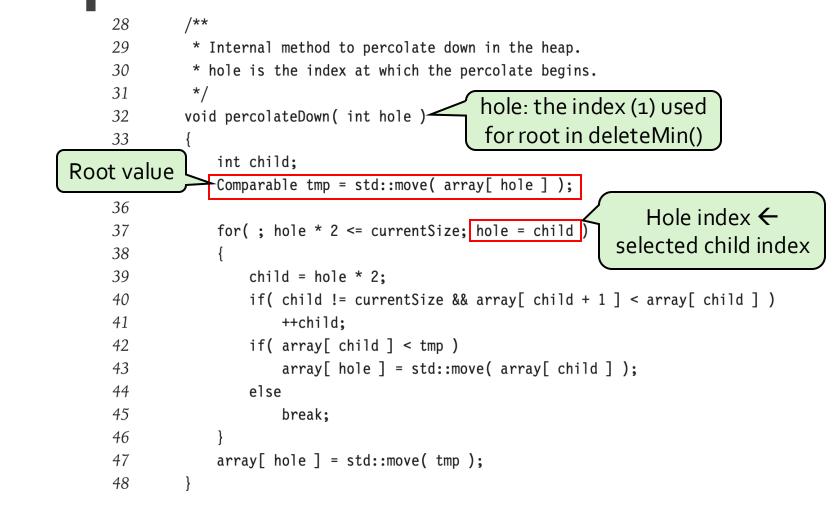


Figure 6.12 Method to perform deleteMin in a binary heap

28	/**
29	* Internal method to percolate down in the heap.
30	* hole is the index at which the percolate begins.
31	*/
32	void percolateDown(int hole)
33	{ percolateDown (deleteMin):
34	<pre>int child; complexity = height = O(log(N))</pre>
35	Comparable tmp = std::move(array[bole])
36	in worst case
37	<pre>for(; hole * 2 <= currentSize; hole = child)</pre>
38	{
39	child = hole * 2;
40	if(child != currentSize && array[child + 1] < array[child])
41	++child;
42	if(array[child] < tmp)
43	array[hole] = std::move(array[child]);
44	else
45	break;
46	}
47	<pre>array[hole] = std::move(tmp);</pre>
48	}

Figure 6.12 Method to perform deleteMin in a binary heap

Other heap operations

- decreaseKey(p,v) < A smaller key: higher priority
 - Lowers the current value of item p to new priority value v
 - Need to percolate up
 - E.g., promote a job
- increaseKey(p,v) < lower priority</p>
 - Increases the current value of item p to new priority value v

A larger key:

- Need to percolate down
- E.g., demote a job
- remove(p)
 - First, decreaseKey(p,-∞)
 - Then, deleteMin
 - E.g., abort/cancel a job

Time complexity for three functions: O(lg(n))

35

Heaps

Build a heap

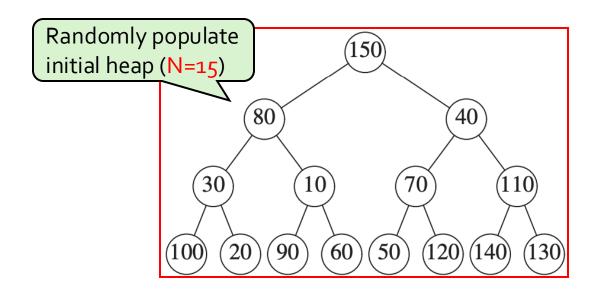
- N successive inserts
 - Each insert:
 - O(1) average [1]
 - O(log(N)) worst-case
 - Total time complexity
 - O(N) average
 - O(N log(N)) worst-case
- A better method buildHeap(): O(N) worst-case

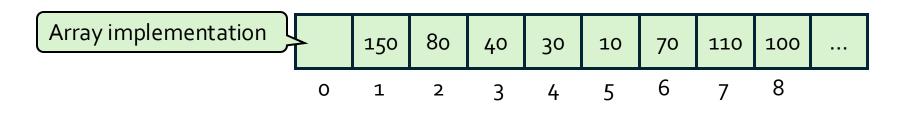
Build a heap

- buildHeap():
- Randomly populate initial heap with structure property
- Perform a percolate-down from each internal node (from element H[size/2] to H[1])
 - → To take care of heap-order property

Build a heap

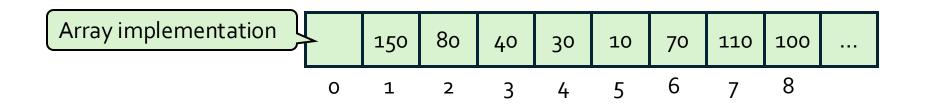
Insert: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

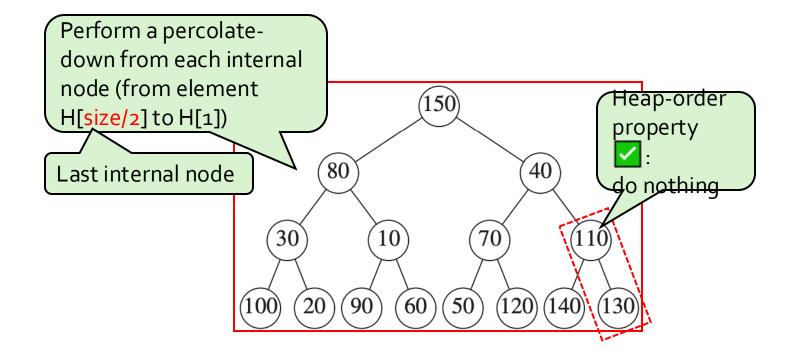


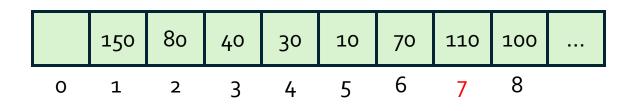


Build a heap

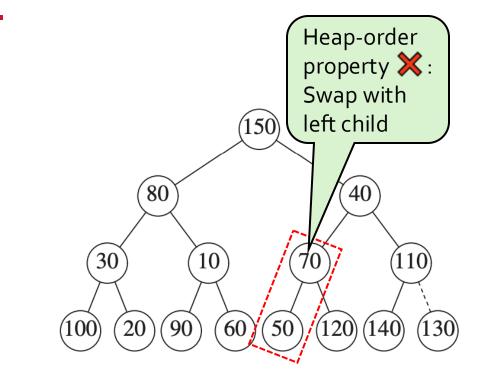
Insert: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 } structure property 🗹 Randomly populate (150) initial heap (N=15) 80 40 (110)10 30 70 90 (60)50 (120)(140)(130)20(100)

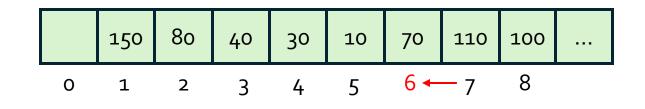


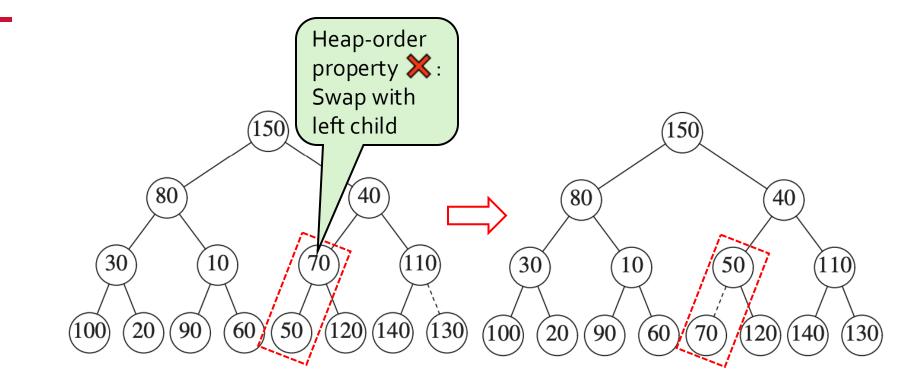


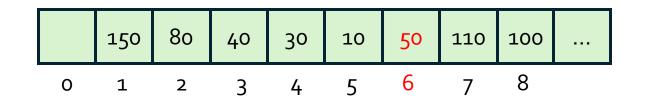


Heaps

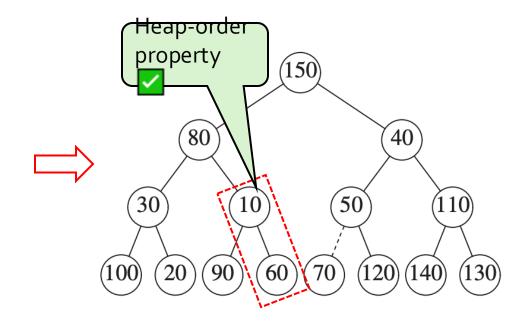






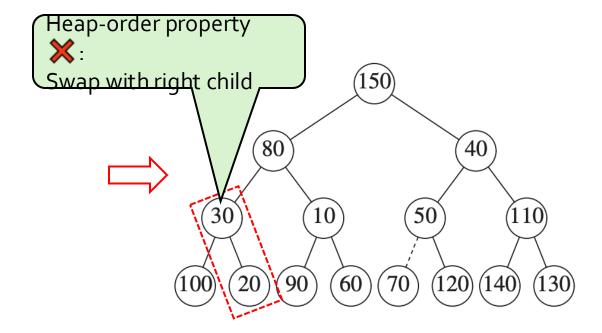


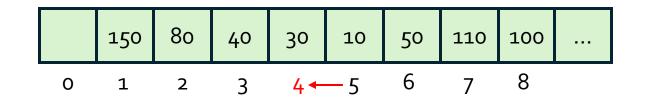
Heaps

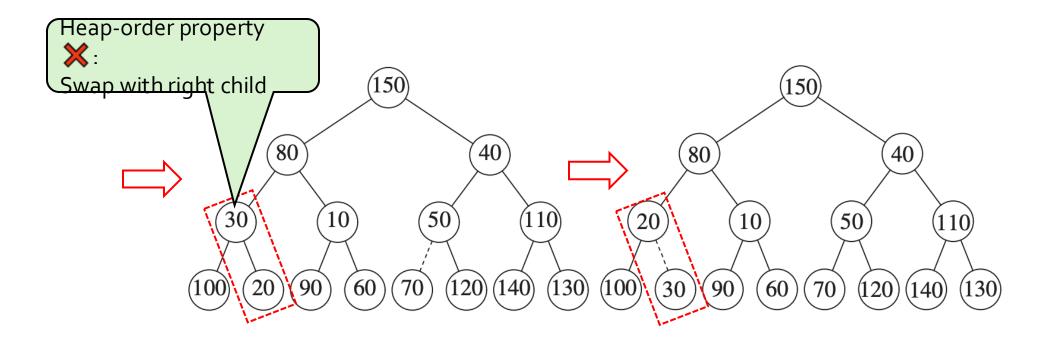


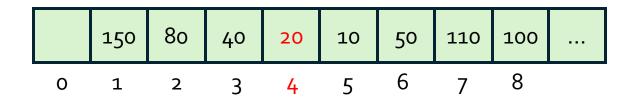


Heaps

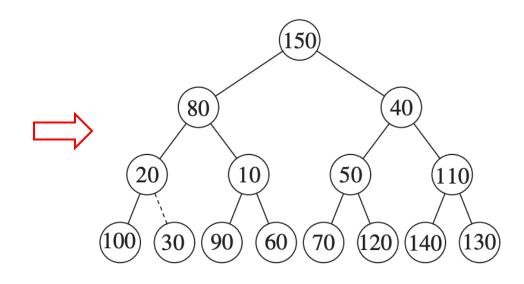






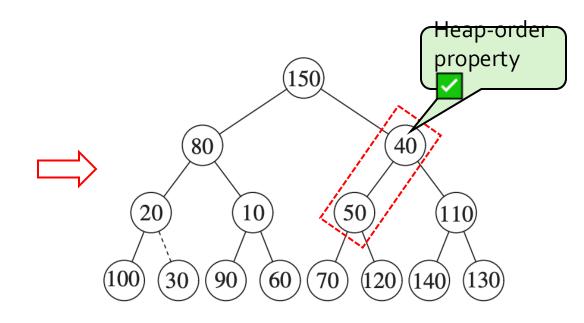


Heaps



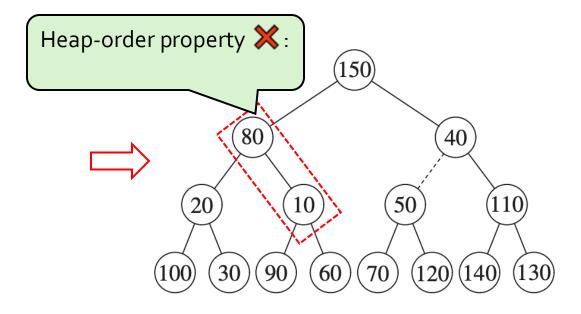
...

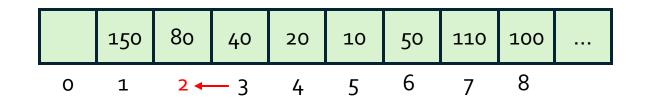
Heaps



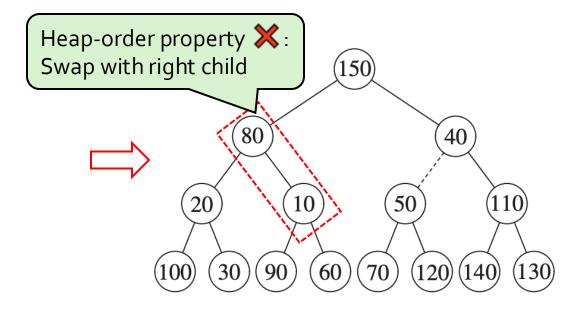
... 3 ← 4

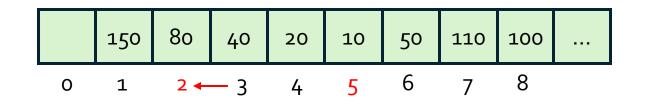
Heaps

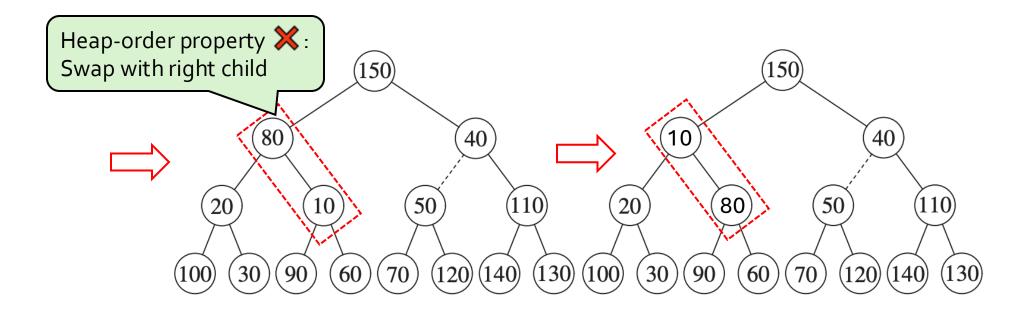


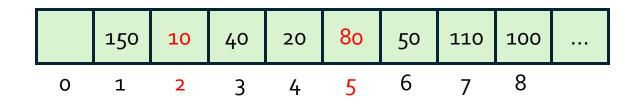


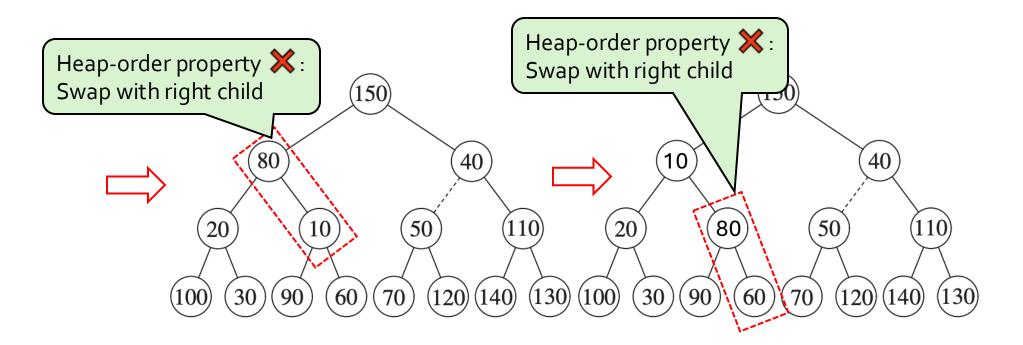
Heaps

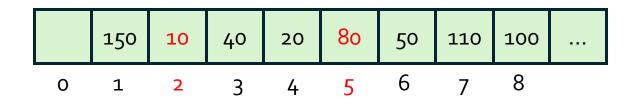




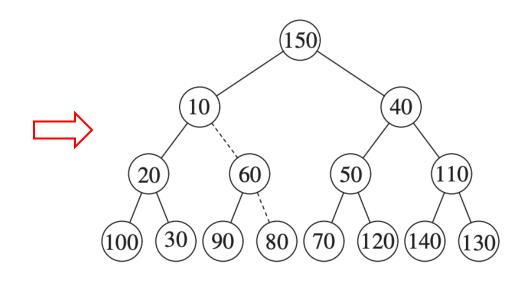






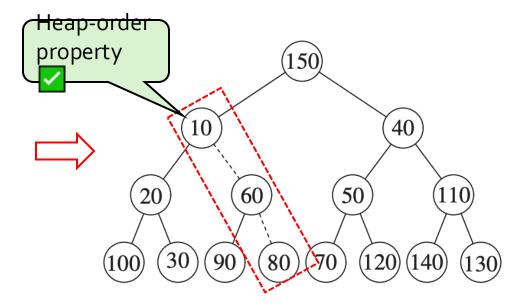


Heaps

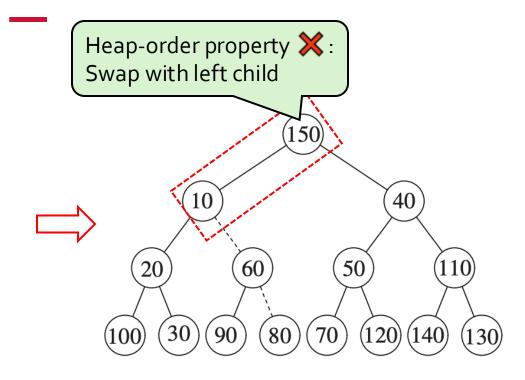


...

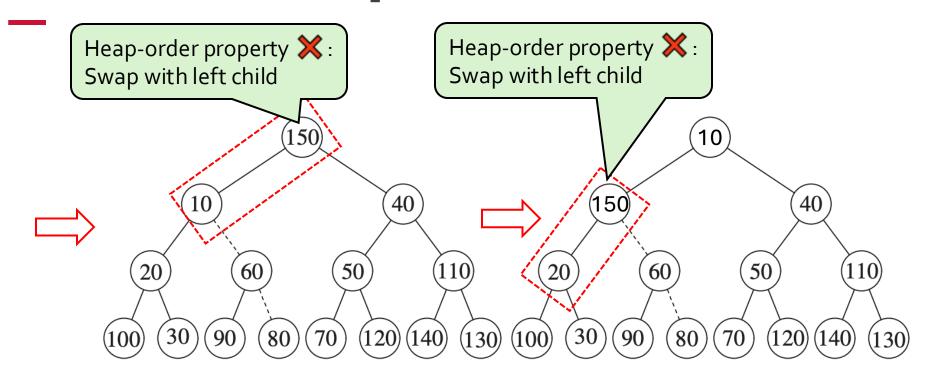
Heaps

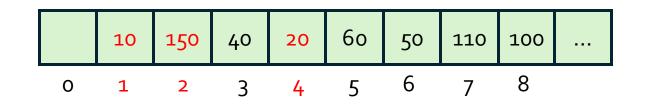


...

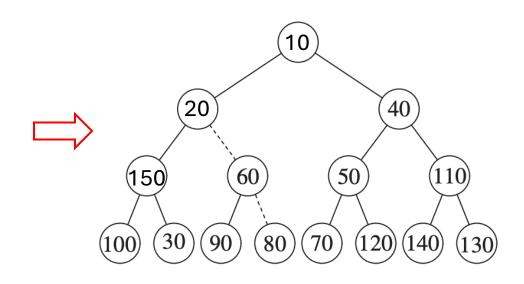


... 1 - 2



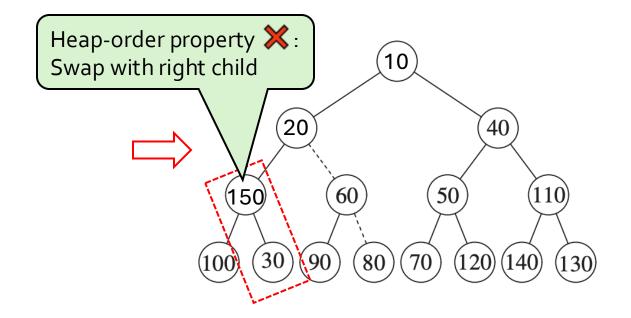


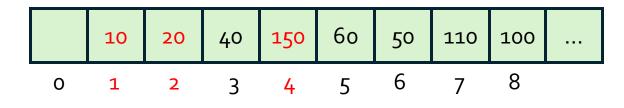
Heaps

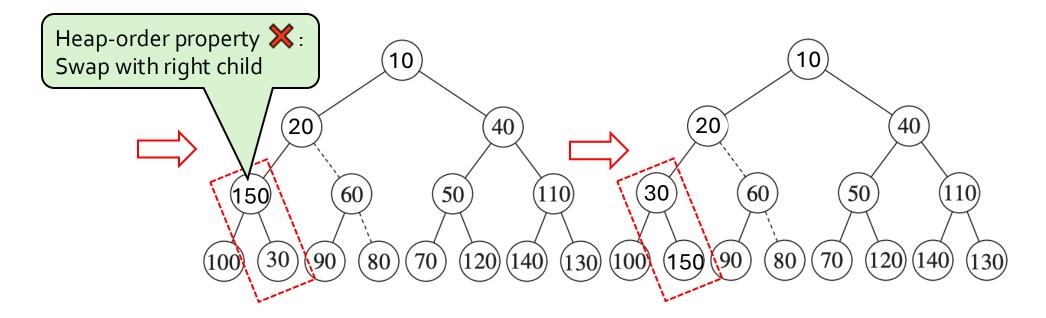


...

Heaps

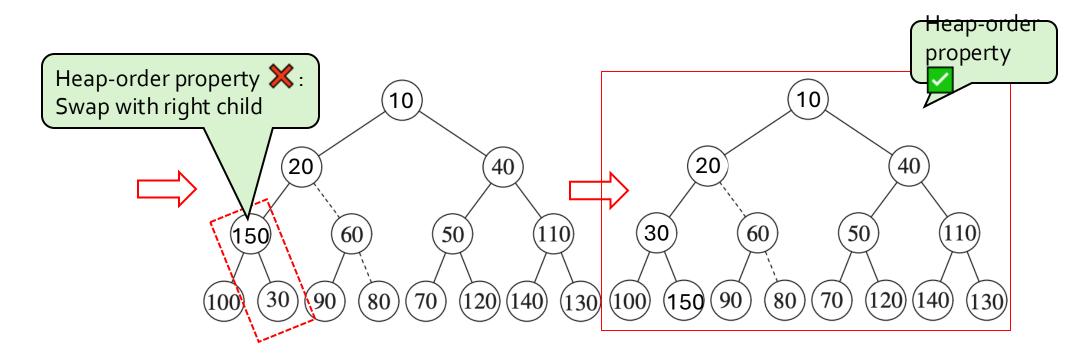


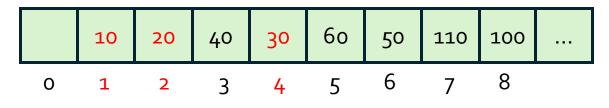




. . .

Build a heap





58

buildHeap

- The key point is to find the lowest and right most internal node
 - aka last internal node
- Offset of the last internal node = floor (offset of the last node / 2)
- Why? Parent(i) = at position floor(i/2)

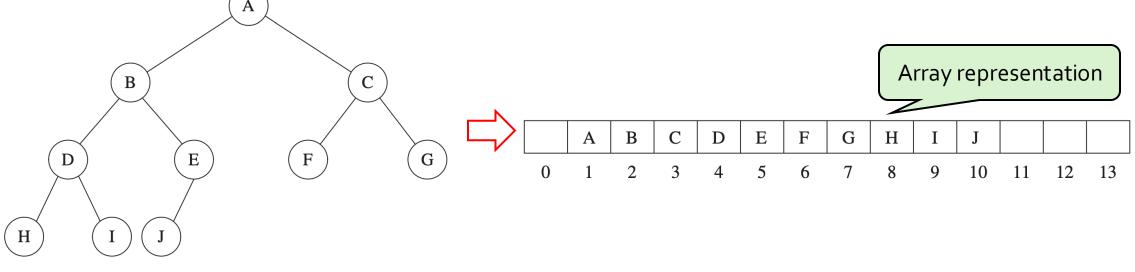
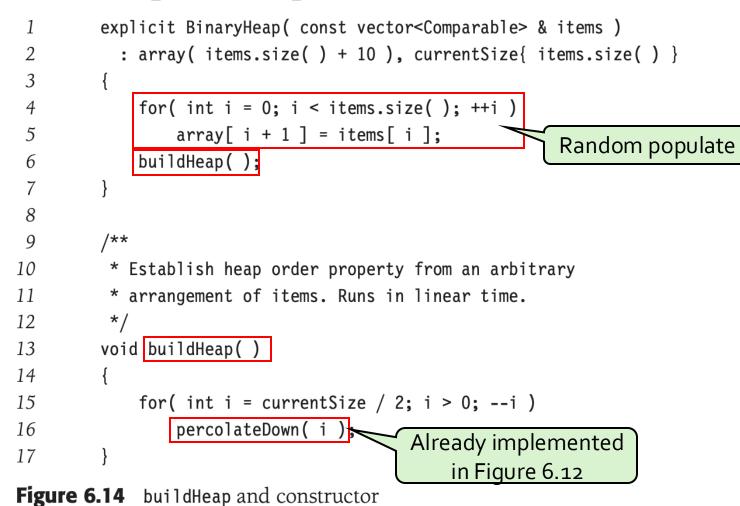


Figure 6.2 A complete binary tree

buildHeap implementation



buildHeap time complexity

- Run-time = ?
 - O(sum of the heights of all the internal nodes)
- because we may have to percolate all the way down to fix every internal node in the worst-case
- Theorem 6.1: For a perfect binary tree of height h, the sum of heights of all nodes is 2h+1-1-(h+1)
 Will be slightly

better in practice

- Since h=lg(N), then sum of heights is O(N)
- Implication:
 - Each insertion costs O(1) amortized time

Binary heap worst-case analysis

- Height: [log(N)]
- insert: O(lg(N)) for each insert
- deleteMin: O(lg(N))
- decreaseKey: O(lg(N))
- increaseKey: O(lg(N))
- remove: O(lg(N))

Binary heap v.s. AVL tree

- Binary Heap does not require extra space for pointers
- Binary Heap is easier to implement
- Although operations are of same time complexity, constants in BST are higher

Application: selection problem

- Given a list of n elements, find the kth smallest element
- Algorithm 1:
 - Sort the list: O(n log n)
 - Pick the kth element: O(1)
- A better algorithm:
 - Use a binary heap (minHeap)

Selection using a minHeap

O(k log(n))

- Input: n elements
- Algorithm:
 - 1. buildHeap(n)
 - 2. Perform k deleteMin() operations
 - 3. Report the kth deleteMin output $\sim O(1)$
- Total run-time = O(n + k log(n) + 1)
- If $k = O(n/\log n)$ then the run-time becomes O(n)

Other heaps

- Binomial Heaps
- d-Heaps
- Generalization of binary heaps (ie., 2-Heaps)
- Leftist Heaps
 - Supports merging of two heaps in o(m+n) time (ie., sub- linear)
- Skew Heaps
 - O(log n) amortized run-time
- Fibonacci Heaps

Time complexity per operation

	findMin	insert	deleteMin	merge
Binary heap	O(1)	O(log(n)) worst-case O(1) amortized for buildHeap	O(log(n))	O(n)
Leftist heap	O(1)	O(log(n))	O(log(n))	O(log(n))
Skew heap	O(1)	O(log(n))	O(log(n))	O(log(n))
Binomial heap	O(1)	O(log(n)) worst-case O(1) amortized for sequence of n inserts	O(log(n))	O(log(n))
Fibonacci heap	O(1)	O(1)	O(log(n))	O(1)

Priority queues in STL

- Uses Binary heap
- Default is maxHeap
- Methods
 - Push, top, pop, empty, clear
- For minHeap:
 - declare priority_queue as:
 - priority_queue<int, vector<int>, greater<int>>Q;

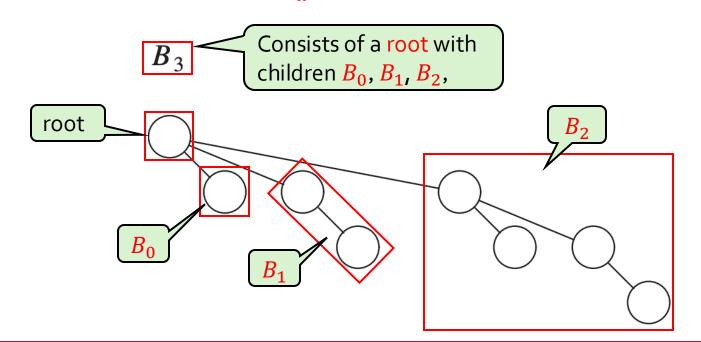
```
#include <iostream>
#include <queue>
using namespace std;
int main() {
    priority_queue<int> Q;
    Q.push(10);
    Q.push(3);
    Q.push(12);
    cout << Q.top() << endl;</pre>
    Q.pop();
    cout << Q.top() << endl;</pre>
    return 0;
```

Binomial heap

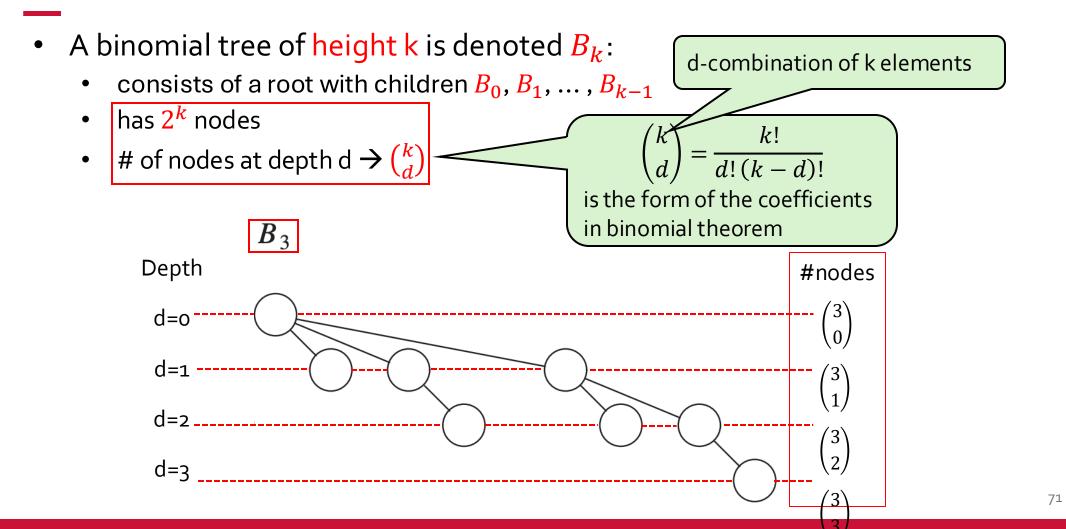
- A binomial heap is a forest of heap-ordered binomial trees, satisfying:
 - Structure property
 - Heap-order property
- A binomial heap is different from binary heap in that:
 - Its structure property is totally different from binary heap
 - Its heap-order property (within each binomial tree) is the same as in a binary heap

Definition: binomial tree

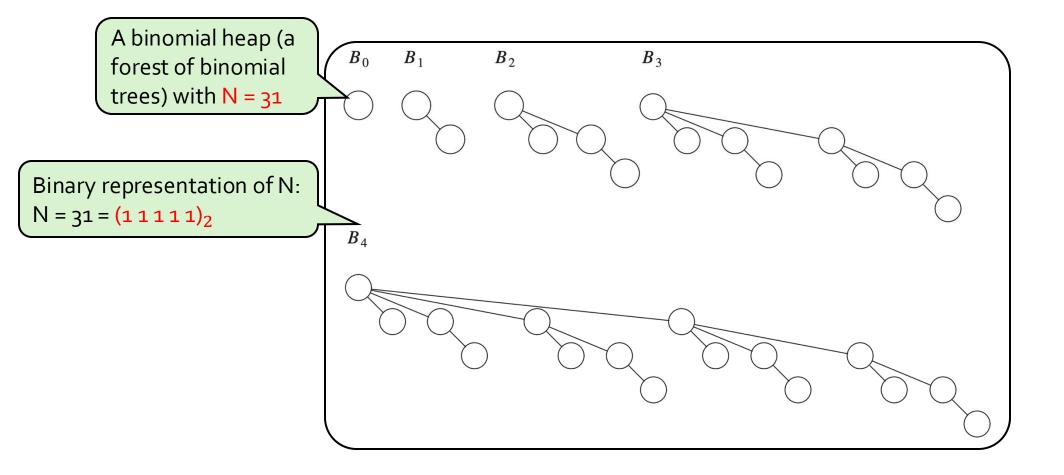
- A binomial tree of height k is denoted B_k :
 - consists of a root with children B_0, B_1, \dots, B_{k-1}
 - has 2^k nodes
 - # of nodes at depth d $\rightarrow \binom{k}{d}$



Definition: binomial tree

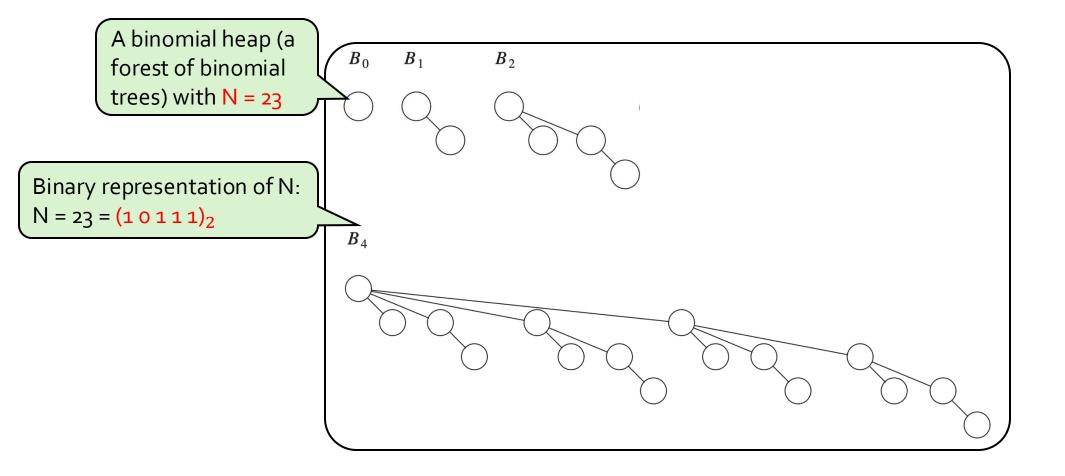


Binomial heaps: example

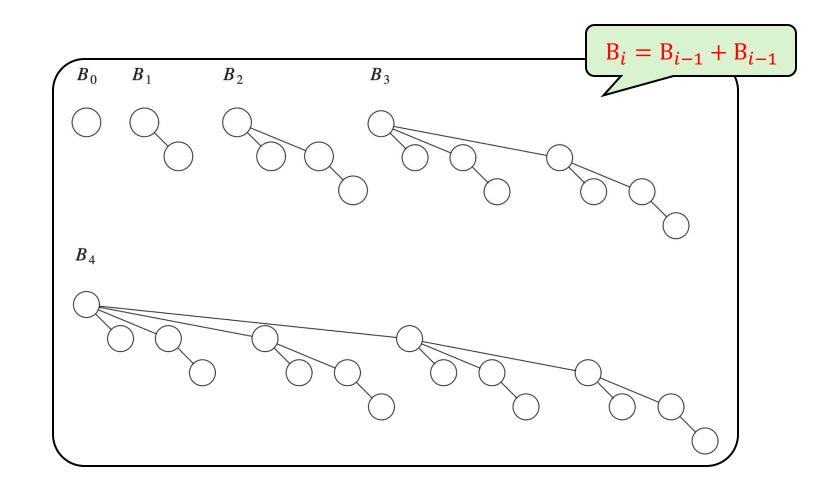


Heaps **Binomial heaps: example** A binomial heap (a \boldsymbol{B}_1 B_0 B_3 forest of binomial trees) with N = 27Binary representation of N: $N = 27 = (11011)_2$ B_{4}

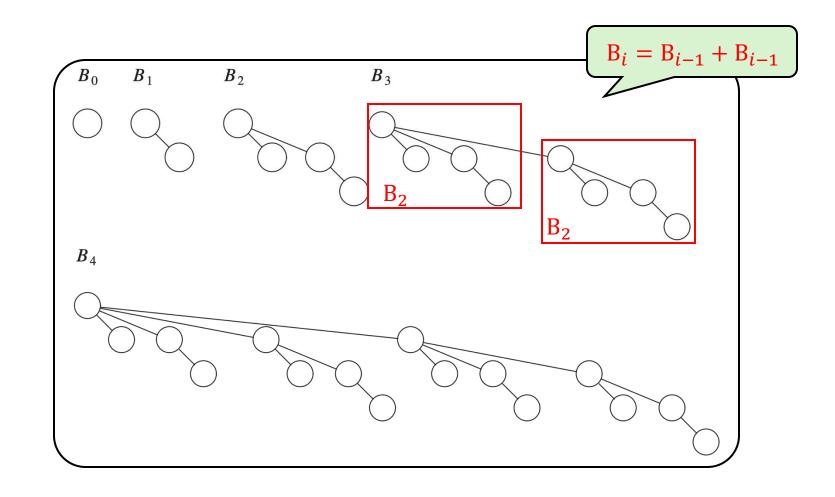
Binomial heaps: example



Binomial heaps: example



Binomial heaps: example



Binomial heap property

- Lemma: There exists a binomial heap for every positive value of n
- Proof:
 - All values of n can be represented in binary representation
 - Have one binomial tree for each power of two with co-efficient of 1
 - Eg., 10 \rightarrow (1010)2 \rightarrow forest contains {B3, B1}

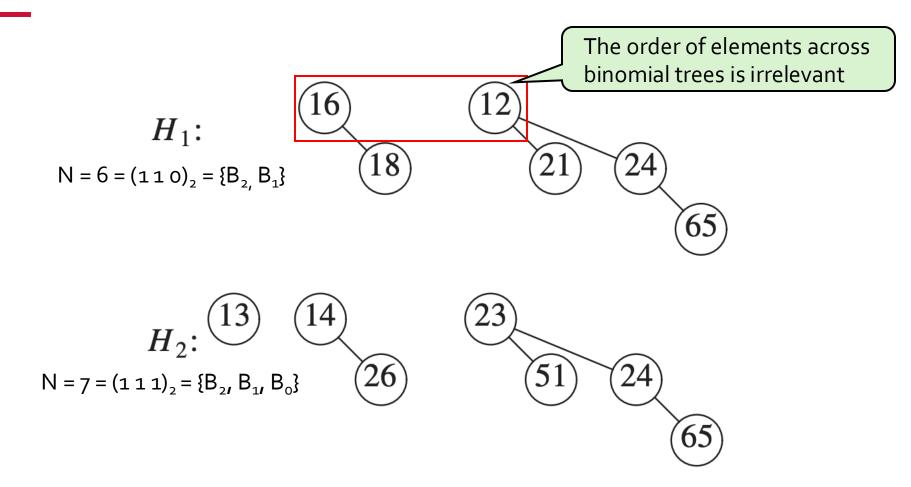
Binomial heaps: heap-order

- Each binomial tree should contain the minimum element at the root of every subtree
 - Just like binary heap, except that the tree here is a binomial tree structure (and not a complete binary tree)
- The order of elements across binomial trees is irrelevant

Definition: binomial heaps

- A binomial heap of n nodes is:
- (Structure property) A forest of binomial trees as described by the binary representation of n
- (Heap-Order Property) Each binomial tree is a min-heap or a maxheap

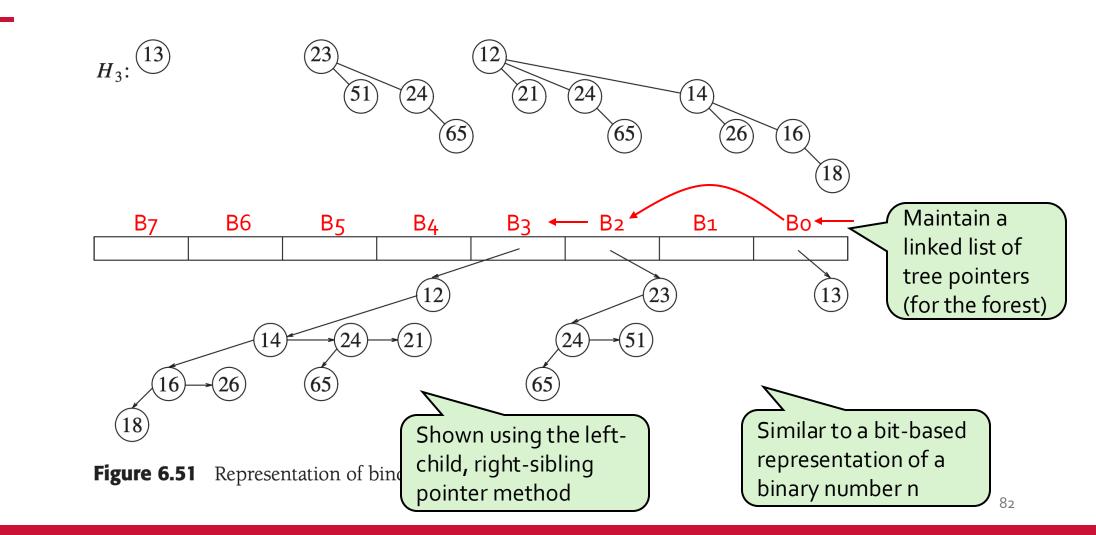
Binomial heaps: examples



Key properties

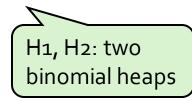
- Could there be multiple trees of the same height in a binomial tree?
 - no
- What is the upper bound of i on B_i in a binomial heap of n nodes?
 - floor(log_2(n))
- Given n, can we tell (for sure) if B_k exists?
 - B_k exists if and only if:
 - the kth least significant bit is 1
 - in the binary representation of n
 - e.g., (1010)2

Binomial heaps: implementation



Binomial heaps: operations

- deleteMin()
- insert(x)
- merge(H1, H2)



Binomial heaps: deleteMin()

- Goal:
 - Given a binomial heap, H, find the minimum and delete it
- Observation:
 - The root of each binomial tree in H contains its minimum element
- Approach: Therefore, return the minimum of all the roots (minimums)
- Complexity: O(log n) comparisons (why?)

Binomial heaps: deleteMin()

- Goal:
 - Given a binomial heap, H, find the minimum and delete it
- Observation:
 - The root of each binomial tree in H contains its minimum element
- Approach: Therefore, return the minimum of all the roots (minimums)
- Complexity: O(log(n)) comparisons (why?)
- because there are at most O(log n) trees

deleteMin() example

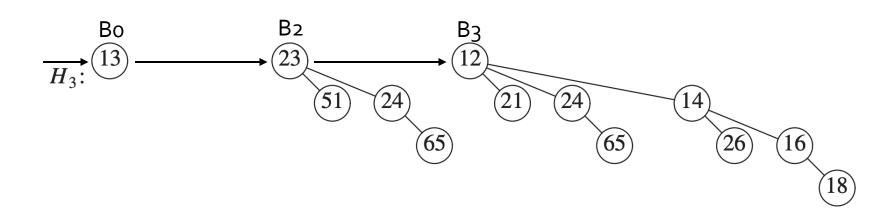
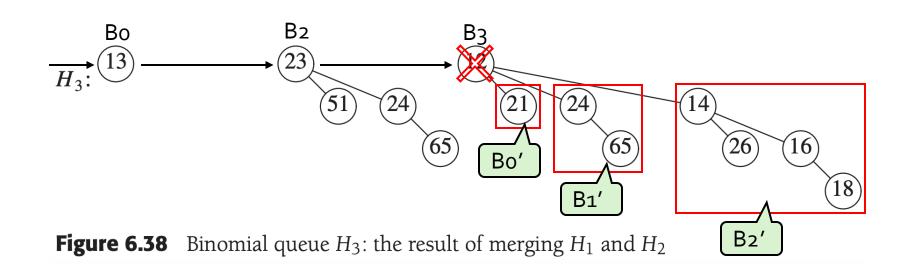


Figure 6.38 Binomial queue H_3 : the result of merging H_1 and H_2

deleteMin() example



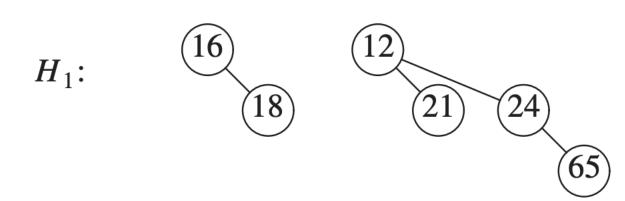
New heap : merge { Bo, B2 } & { Bo', B1', B2' }

Binomial heaps: insert(x)

- Goal:
 - To insert a new element x into a binomial heap H
- Observation:
 - Element x can be viewed as a single element binomial heap
- insert (H,x) $\leftarrow \rightarrow$ merge(H, {x})
- If we decide how to do merge, we will automatically figure out how to implement both insert() and deleteMin()

- Let n1 be the number of nodes in H1
- Let n2 be the number of nodes in H2
- Therefore, the new heap is going to have n1 + n2 nodes
- Assume n = n1 + n2
- Logic:
- Merge trees of same height, starting from lowest height trees
- If only one tree of a given height, then just copy that
- Otherwise, need to do carryover (just like adding two binary numbers)

Binomial heaps: merge(H1, H2)



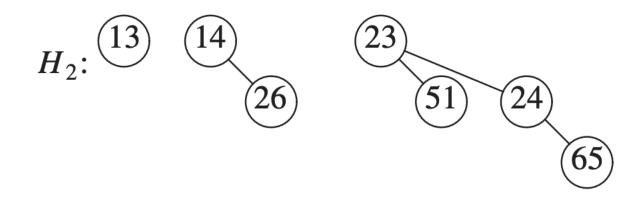
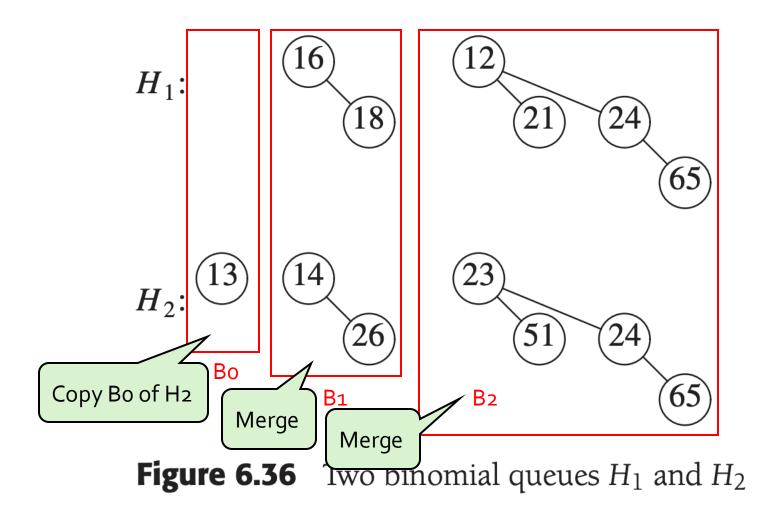
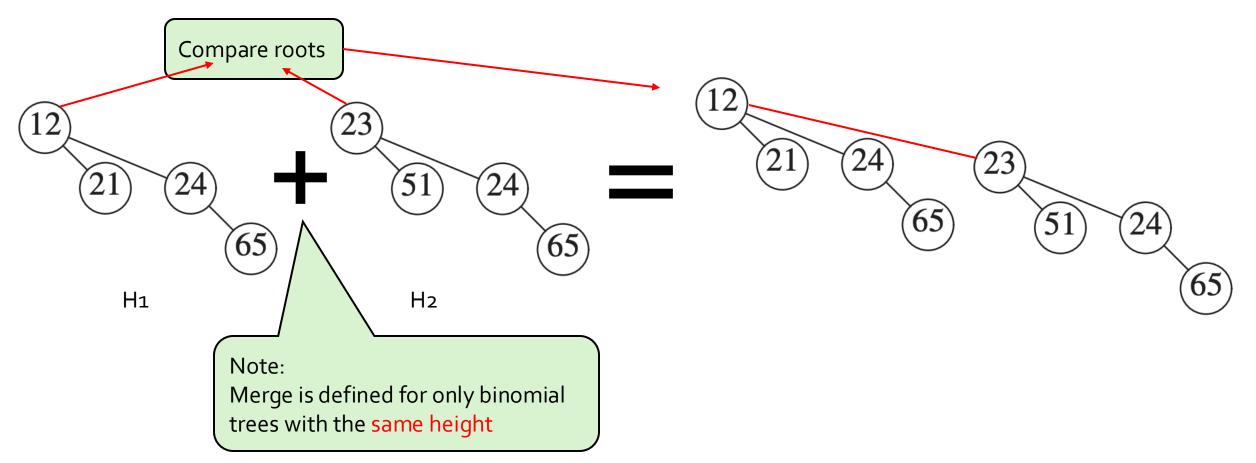
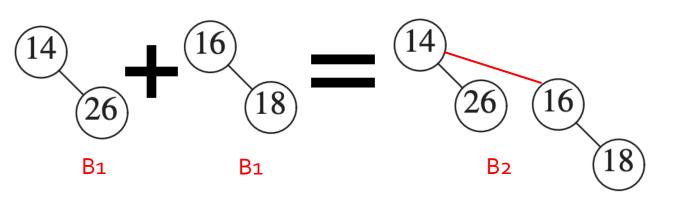
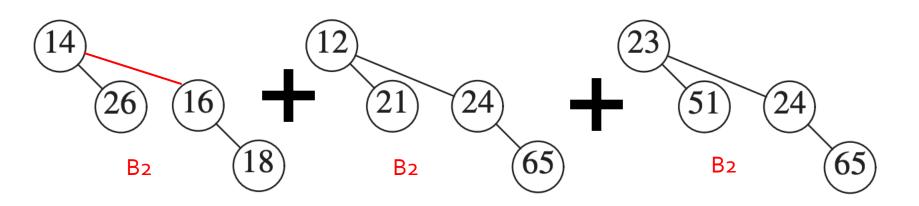


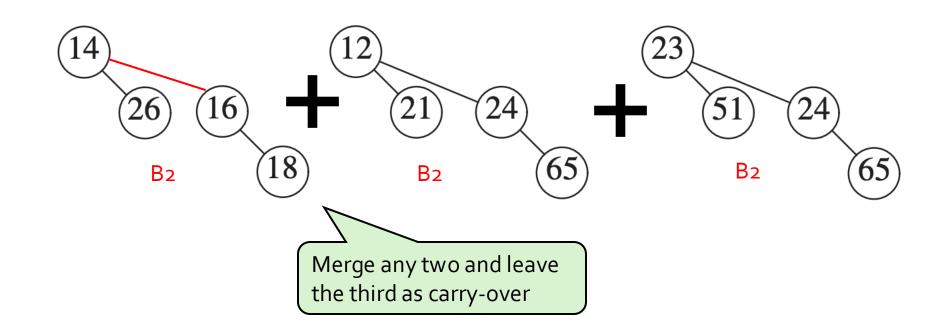
Figure 6.36 Two binomial queues H_1 and H_2

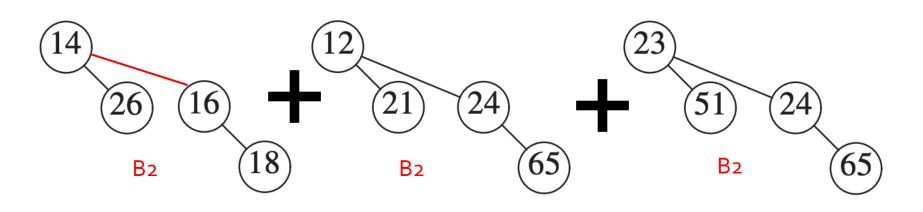


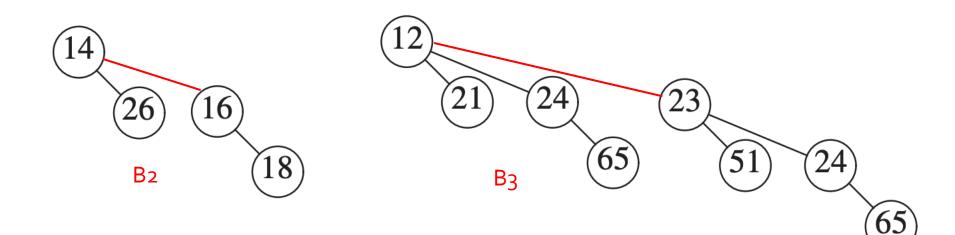




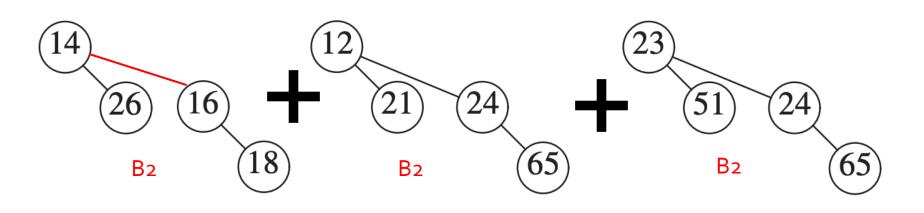




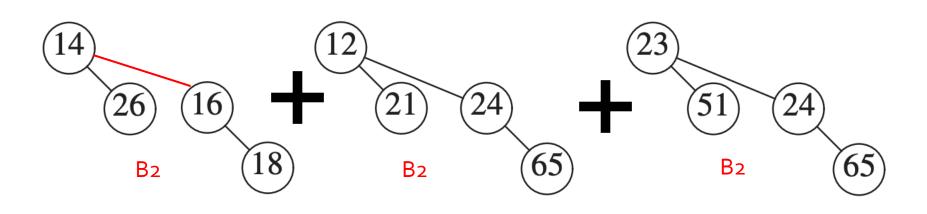


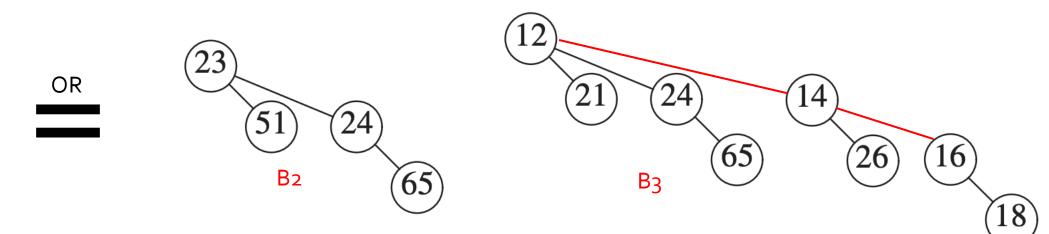


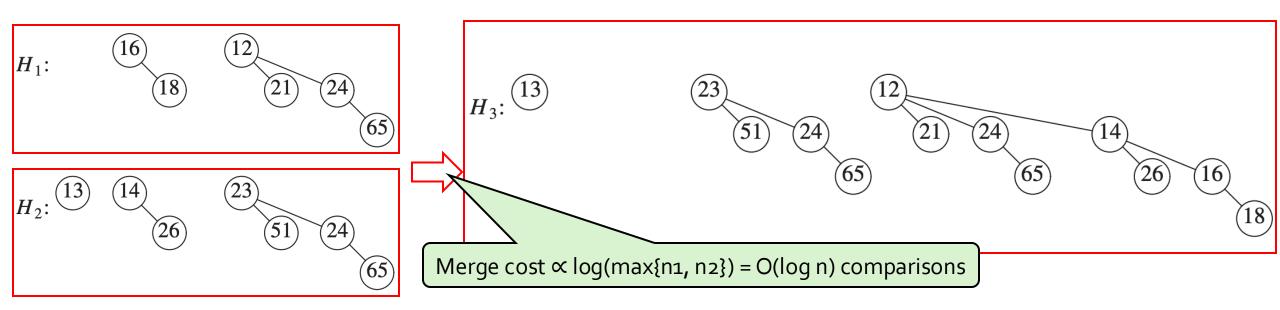
Binomial heaps: merge(H1, H2)



OR 12 14 26 16 23 21 24 26 16 23 51 24 82 65 83 18 51 24 65







Merge: time complexity

- Merge takes O(log n) comparisons
- Therefore:
 - insert and deleteMin also take O(log n)
- It can be further proved that an uninterrupted sequence of m insert operations takes only O(m) time per operation, implying O(1) amortize time per insert

Binomial heaps: time complexity

- insert
 - O(lg(n)) worst-case
 - O(1) amortized time if insertion is done in an uninterrupted sequence (i.e., without being intervened by deleteMins)
- deleteMin, findMin
 - O(lg(n)) worst-case
- merge
 - O(lg(n)) worst-case

Binomial heaps: summary

- Binomial heap-based queues maintain the minimum or maximum element of a set
- Support O(log N) operations worst-case
 - Especially merge
- Many applications
- Merge jobs from multiple workers

Time complexity per operation

	findMin	insert	deleteMin	merge
Binary heap	O(1)	O(log(n)) worst-case O(1) amortized for buildHeap	O(log(n))	O(n)
Leftist heap	O(1)	O(log(n))	O(log(n))	O(log(n))
Skew heap	O(1)	O(log(n))	O(log(n))	O(log(n))
Binomial heap	O(1)	O(log(n)) worst-case O(1) amortized for sequence of n inserts	O(log(n))	O(log(n))
Fibonacci heap	O(1)	O(1)	O(log(n))	O(1)