
CPTS 223 Advanced Data
Structure C/C++

Heaps

1

Motivation
Heaps

WSU

• Queues are a standard mechanism for ordering tasks on a first-come,
first-served basis

• However, some tasks may be more important or timely than others
(higher priority)

• Priority queues

• Store tasks using a partial ordering based on priority

• Ensure highest priority task at head of queue

• Heaps are the underlying data structure of priority queues

2

Applications
Heaps

WSU

• Operating system scheduling
• Process jobs by priority

• Graph algorithms
• Find shortest path

• Event simulation
• Look up next event to happen

3

Using priority queues
Heaps

WSU

• Main operations

• insert (i.e., enqueue)
• Dynamic insert

• specification of a priority level (0-high, 1,2.. Low)

• deleteMin (i.e., dequeue)
• Finds the current minimum element (read: “highest priority”) in the queue,

deletes it from the queue, and returns it

• Performance goal is for operations to be “fast”

4

42 6

2111

17

2

insert

deleteMin

Priority queues: simple options
Heaps

WSU

• Unordered linked list
• O(1) insert

• O(n) deleteMin

• Ordered linked list
• O(n) insert

• O(1) deleteMin

• Ordered array
• O(lg(n) + n) insert

• O(n) deleteMin

5

5 2 10 1

1 2 5 10

1 2 5 10 … …

Priority queues: simple options
Heaps

WSU

• BST

• Θ(lg(n)) average-case for insert and deleteMin

• O(n) worse-case for insert and deleteMin

• Self-based BST

• O(lg(n)) worse-case for findMin, insert and delteMin

• Complicated implementation
• AVL trees: height maintenance for every node

• R-B trees: complicated implementations for many cases

• Bottom-up procedure

• Top-down procedure

6

Search, insert and
delete any data cost

O(lg(n)): overkill

Can we do better for
findMin and deleteMin?

Time complexity per operation
Heaps

WSU

7

findMin insert deleteMin merge

Binary heap O(1) O(log(n)) worst-case
O(1) amortized for
buildHeap

O(log(n)) O(n)

Leftist heap O(1) O(log(n)) O(log(n)) O(log(n))

Skew heap O(1) O(log(n)) O(log(n)) O(log(n))

Binomial heap O(1) O(log(n)) worst-case
O(1) amortized for
sequence of n inserts

O(log(n)) O(log(n))

Fibonacci heap O(1) O(1) O(log(n)) O(1)

Binary heap
Heaps

WSU

• A binary heap is a binary tree with two properties

• Structure property

• Heap-order property

8

Binary heap: structure property
Heaps

WSU

• A binary heap is a complete
binary tree
• Each level (except possibly the

bottom most level) is
completely filled

• The bottom most level may be
partially filled (from left to
right)

• Height of a complete binary
tree with N elements is
log _2(𝑁)

9

With a simple array
representation

Binary heap: heap-order property
Heaps

WSU

• Heap-order property (for a “MinHeap”)

• For every node X, key(parent(X)) ≤ key(X)

• Except root node, which has no parent

• Thus, minimum key always at root

• Alternatively, for a “MaxHeap”, always keep the maximum key at the
root

• Insert and deleteMin must maintain heap-order property

10

Binary heap: heap-order property
Heaps

WSU

11

≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤

Duplicates allowed No order implied for elements
that do not share ancestor-

descendant relation

Implementation: arrays
Heaps

WSU

12

Given element at position i in the array
• leftChild(i) = 2i
• rightChild(i) = 2i + 1
• parent(i) = i/2

Parent
B: at 2

Left child
H: at 8

Right child
I: at 9

D: at 4

Binary heap: class interface
Heaps

WSU

13

store the heap
as a vector

Fix heap properties
after deleteMin

Find the min value
without deleting it

A general delete() is not
important for heaps, but

can be implemented

An efficient way to build
a heap with n nodes

Binary heap: insert
Heaps

WSU

• Insert new element into the heap at the next available slot (“hole”)

• According to maintaining a complete binary tree

• Then, “percolate” the element up the heap while heap-order property
not satisfied

14

Binary heap: insert
Heaps

WSU

15

Insert new element into the heap
at the next available slot (“hole”) Structure property

Binary heap: insert
Heaps

WSU

16

Insert new element into the heap
at the next available slot (“hole”) Heap-order property

14

Binary heap: insert
Heaps

WSU

17

“percolate” the element up
the heap while heap-order

property not satisfied

14

14

Binary heap: insert
Heaps

WSU

18

14

Heap-order property

Heap insert: implementation
Heaps

WSU

19

Resize the array

Heap insert: implementation
Heaps

WSU

20

Create the hole

Heap insert: implementation
Heaps

WSU

21

Temporary storage

Heap insert: implementation
Heaps

WSU

22

Temporary storage Find the position
for “hole”

Heap insert: implementation
Heaps

WSU

23

Temporary storage Find the position
for “hole”

Restore the value

Heap insert: implementation
Heaps

WSU

24

insert:
complexity = height = O(log(N))

in worst case

Heap deleteMin
Heaps

WSU

• Minimum element is always at the root

• Heap decreases by one in size

• Move last element into hole at root

• Percolate down while heap-order property not satisfied

25

So findMin requires
O(1) in worst case

Heap deleteMin
Heaps

WSU

26

Minimum element is
always at the root

31

Percolate down while
heap-order property
not satisfied

Move last element
into hole at root

Heap deleteMin
Heaps

WSU

27

31

Percolate down while
heap-order property
not satisfied

31

Percolate down while
heap-order property
not satisfied

Heap deleteMin
Heaps

WSU

28

Heap-order property

31

Heap deleteMin
Heaps

WSU

29

Heap deleteMin
Heaps

WSU

30

hole: the index (1) used
for root in deleteMin()

Heap deleteMin
Heaps

WSU

31

Index for
left child

Root value If right child is:
(1) present and
(2) smaller than left child
Then we use the right child

Violate heap-order property:
Move the selected child node
to hole

hole: the index (1) used
for root in deleteMin()

Heap deleteMin
Heaps

WSU

32

Root value

Hole index
selected child index

hole: the index (1) used
for root in deleteMin()

Heap deleteMin
Heaps

WSU

33

percolateDown (deleteMin):
complexity = height = O(log(N))

in worst case

Other heap operations
Heaps

WSU

• decreaseKey(p,v)
• Lowers the current value of item p to new priority value v

• Need to percolate up

• E.g., promote a job

• increaseKey(p,v)
• Increases the current value of item p to new priority value v

• Need to percolate down

• E.g., demote a job

• remove(p)
• First, decreaseKey(p,-∞)

• Then, deleteMin

• E.g., abort/cancel a job
34

Time complexity for
three functions:

O(lg(n))

A smaller key:
higher priority

A larger key:
lower priority

Build a heap
Heaps

WSU

• N successive inserts

• Each insert:
• O(1) average [1]

• O(log(N)) worst-case

• Total time complexity
• O(N) average

• O(N log(N)) worst-case

• A better method buildHeap(): O(N) worst-case

35
[1] Porter, Thomas, and Istvan Simon. "Random insertion into a priority queue structure." IEEE Transactions on Software Engineering 3 (1975): 292-298.

Build a heap
Heaps

WSU

• buildHeap():

• Randomly populate initial heap with structure property

• Perform a percolate-down from each internal node (from element
H[size/2] to H[1])
• → To take care of heap-order property

36

Build a heap
Heaps

WSU

37

Randomly populate
initial heap (N=15)

150 80 40 30 10 70 110 100 …

0 1 2 3 4 5 6 7 8

Insert: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Array implementation

Build a heap
Heaps

WSU

38

Randomly populate
initial heap (N=15)

structure property

150 80 40 30 10 70 110 100 …

0 1 2 3 4 5 6 7 8

Insert: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Array implementation

Build a heap
Heaps

WSU

39

Perform a percolate-
down from each internal
node (from element
H[size/2] to H[1])

150 80 40 30 10 70 110 100 …

0 1 2 3 4 5 6 7 8

Last internal node

Heap-order
property

:
do nothing

Build a heap
Heaps

WSU

40

150 80 40 30 10 70 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order
property :
Swap with
left child

Build a heap
Heaps

WSU

41

150 80 40 30 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order
property :
Swap with
left child

Build a heap
Heaps

WSU

42

150 80 40 30 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order
property

Build a heap
Heaps

WSU

43

150 80 40 30 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order property
:

Swap with right child

Build a heap
Heaps

WSU

44

150 80 40 20 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order property
:

Swap with right child

Build a heap
Heaps

WSU

45

150 80 40 20 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Build a heap
Heaps

WSU

46

150 80 40 20 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order
property

Build a heap
Heaps

WSU

47

Heap-order property :

150 80 40 20 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Build a heap
Heaps

WSU

48

Heap-order property :
Swap with right child

150 80 40 20 10 50 110 100 …

0 1 2 3 4 5 6 7 8

Build a heap
Heaps

WSU

49

150 10 40 20 80 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order property :
Swap with right child

10

80

Build a heap
Heaps

WSU

50

150 10 40 20 80 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order property :
Swap with right child

10

80

Heap-order property :
Swap with right child

Build a heap
Heaps

WSU

51

150 10 40 20 60 50 110 100 …

0 1 2 3 4 5 6 7 8

Build a heap
Heaps

WSU

52

150 10 40 20 60 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order
property

Build a heap
Heaps

WSU

53

150 10 40 20 60 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order property :
Swap with left child

Build a heap
Heaps

WSU

54

10 150 40 20 60 50 110 100 …

0 1 2 3 4 5 6 7 8

Heap-order property :
Swap with left child

10

150

Heap-order property :
Swap with left child

Build a heap
Heaps

WSU

55

10 20 40 150 60 50 110 100 …

0 1 2 3 4 5 6 7 8

10

150

20

Build a heap
Heaps

WSU

56

10

150

20

Heap-order property :
Swap with right child

10 20 40 150 60 50 110 100 …

0 1 2 3 4 5 6 7 8

Build a heap
Heaps

WSU

57

10

150

20

Heap-order property :
Swap with right child 10

30

20

150

10 20 40 30 60 50 110 100 …

0 1 2 3 4 5 6 7 8

Build a heap
Heaps

WSU

58

10

150

20

Heap-order property :
Swap with right child 10

30

20

150

Heap-order
property

10 20 40 30 60 50 110 100 …

0 1 2 3 4 5 6 7 8

buildHeap
Heaps

WSU

• The key point is to find the lowest and right most internal node
• aka last internal node

• Offset of the last internal node = floor (offset of the last node / 2)

• Why? Parent(i) = at position floor(i/2)

59

Array representation

buildHeap implementation
Heaps

WSU

60

Already implemented
in Figure 6.12

Random populate

buildHeap time complexity
Heaps

WSU

• Run-time = ?

• O(sum of the heights of all the internal nodes)

• because we may have to percolate all the way down to fix every
internal node in the worst-case

• Theorem 6.1: For a perfect binary tree of height h, the sum of heights
of all nodes is 2h+1 – 1 – (h + 1)

• Since h=lg(N), then sum of heights is O(N)

• Implication:

• Each insertion costs O(1) amortized time
61

Will be slightly
better in practice

Binary heap worst-case analysis
Heaps

WSU

• Height: log(𝑁)

• insert: O(lg(N)) for each insert

• deleteMin: O(lg(N))

• decreaseKey: O(lg(N))

• increaseKey: O(lg(N))

• remove: O(lg(N))

62

Binary heap v.s. AVL tree
Heaps

WSU

• Binary Heap does not require extra space for pointers

• Binary Heap is easier to implement

• Although operations are of same time complexity, constants in BST
are higher

63

Application: selection problem
Heaps

WSU

• Given a list of n elements, find the kth smallest element

• Algorithm 1:
• Sort the list: O(n log n)

• Pick the kth element: O(1)

• A better algorithm:

• Use a binary heap (minHeap)

64

Selection using a minHeap
Heaps

WSU

• Input: n elements

• Algorithm:
1. buildHeap(n)

2. Perform k deleteMin() operations

3. Report the kth deleteMin output

• Total run-time = O(n + k log(n) + 1)

• If k = O(n/log n) then the run-time becomes O(n)

65

O(n)
O(k log(n))

O(1)

Other heaps
Heaps

WSU

• Binomial Heaps

• d-Heaps

• Generalization of binary heaps (ie., 2-Heaps)

• Leftist Heaps
• Supports merging of two heaps in o(m+n) time (ie., sub- linear)

• Skew Heaps
• O(log n) amortized run-time

• Fibonacci Heaps

66

Time complexity per operation
Heaps

WSU

67

findMin insert deleteMin merge

Binary heap O(1) O(log(n)) worst-case
O(1) amortized for
buildHeap

O(log(n)) O(n)

Leftist heap O(1) O(log(n)) O(log(n)) O(log(n))

Skew heap O(1) O(log(n)) O(log(n)) O(log(n))

Binomial heap O(1) O(log(n)) worst-case
O(1) amortized for
sequence of n inserts

O(log(n)) O(log(n))

Fibonacci heap O(1) O(1) O(log(n)) O(1)

Priority queues in STL
Heaps

WSU

• Uses Binary heap

• Default is maxHeap

• Methods
• Push, top, pop, empty, clear

• For minHeap:
• declare priority_queue as:

• priority_queue<int, vector<int>, greater<int>> Q;

68

#include <iostream>

#include <queue>

using namespace std;

int main() {

 priority_queue<int> Q;

 Q.push(10);

 Q.push(3);

 Q.push(12);

 cout << Q.top() << endl;

 Q.pop();

 cout << Q.top() << endl;

 return 0;

}

Binomial heap
Heaps

WSU

• A binomial heap is a forest of heap-ordered binomial trees, satisfying:

• Structure property

• Heap-order property

• A binomial heap is different from binary heap in that:

• Its structure property is totally different from binary heap

• Its heap-order property (within each binomial tree) is the same as
in a binary heap

69

Definition: binomial tree
Heaps

WSU

• A binomial tree of height k is denoted 𝐵𝑘:
• consists of a root with children 𝐵0, 𝐵1, ... , 𝐵𝑘−1

• has 2𝑘 nodes

• # of nodes at depth d → 𝑘
𝑑

70

Consists of a root with
children 𝐵0, 𝐵1, 𝐵2,

root

𝐵0
𝐵1

𝐵2

Definition: binomial tree
Heaps

WSU

• A binomial tree of height k is denoted 𝐵𝑘:
• consists of a root with children 𝐵0, 𝐵1, ... , 𝐵𝑘−1

• has 2𝑘 nodes

• # of nodes at depth d → 𝑘
𝑑

71

Depth

d=0

d=1

d=2

d=3

#nodes

3

0

3

1

3

2

3

3

𝑘

𝑑
=

𝑘!

𝑑! 𝑘 − 𝑑 !
is the form of the coefficients
in binomial theorem

d-combination of k elements

Binomial heaps: example
Heaps

WSU

72

A binomial heap (a
forest of binomial
trees) with N = 31

Binary representation of N:
N = 31 = (1 1 1 1 1)2

Binomial heaps: example
Heaps

WSU

73

A binomial heap (a
forest of binomial
trees) with N = 27

Binary representation of N:
N = 27 = (1 1 0 1 1)2

Binomial heaps: example
Heaps

WSU

74

A binomial heap (a
forest of binomial
trees) with N = 23

Binary representation of N:
N = 23 = (1 0 1 1 1)2

Binomial heaps: example
Heaps

WSU

75

B𝑖 = B𝑖−1 + B𝑖−1

Binomial heaps: example
Heaps

WSU

76

B𝑖 = B𝑖−1 + B𝑖−1

B2

B2

Binomial heap property
Heaps

WSU

• Lemma: There exists a binomial heap for every positive value of n

• Proof:

• All values of n can be represented in binary representation
• Have one binomial tree for each power of two with co-efficient of 1

• Eg., 10 → (1010)2 → forest contains {B3, B1}

77

Binomial heaps: heap-order
Heaps

WSU

• Each binomial tree should contain the minimum element at the root
of every subtree

• Just like binary heap, except that the tree here is a binomial tree
structure (and not a complete binary tree)

• The order of elements across binomial trees is irrelevant

78

Definition: binomial heaps
Heaps

WSU

• A binomial heap of n nodes is:

• (Structure property) A forest of binomial trees as described by the
binary representation of n

• (Heap-Order Property) Each binomial tree is a min-heap or a max-
heap

79

Binomial heaps: examples
Heaps

WSU

80

N = 6 = (1 1 0)2 = {B2, B1}

N = 7 = (1 1 1)2 = {B2, B1, B0}

The order of elements across
binomial trees is irrelevant

Key properties
Heaps

WSU

• Could there be multiple trees of the same height in a binomial tree?
• no

• What is the upper bound of i on Bi in a binomial heap of n nodes?
• floor(log_2(n))

• Given n, can we tell (for sure) if Bk exists?
• Bk exists if and only if:

• the kth least significant bit is 1

• in the binary representation of n

• e.g., (1010)2

81

Binomial heaps: implementation
Heaps

WSU

82

Similar to a bit-based
representation of a
binary number n

Shown using the left-
child, right-sibling
pointer method

Maintain a
linked list of
tree pointers
(for the forest)

B7 B6 B5 B4 B3 B2 B1 B0

Binomial heaps: operations
Heaps

WSU

• deleteMin()

• insert(x)

• merge(H1, H2)

83

H1, H2: two
binomial heaps

Binomial heaps: deleteMin()
Heaps

WSU

• Goal:

• Given a binomial heap, H, find the minimum and delete it

• Observation:

• The root of each binomial tree in H contains its minimum element

• Approach: Therefore, return the minimum of all the roots (minimums)

• Complexity: O(log n) comparisons (why?)

84

Binomial heaps: deleteMin()
Heaps

WSU

• Goal:

• Given a binomial heap, H, find the minimum and delete it

• Observation:

• The root of each binomial tree in H contains its minimum element

• Approach: Therefore, return the minimum of all the roots (minimums)

• Complexity: O(log(n)) comparisons (why?)

• because there are at most O(log n) trees

85

deleteMin() example
Heaps

WSU

86

B0 B2 B3

deleteMin() example
Heaps

WSU

87

B0 B2 B3

B0’

B1’

B2’

New heap : merge { B0, B2 } & { B0’, B1’, B2’ }

Binomial heaps: insert(x)
Heaps

WSU

• Goal:

• To insert a new element x into a binomial heap H

• Observation:

• Element x can be viewed as a single element binomial heap

• insert (H,x) ➔ merge(H, {x})

• If we decide how to do merge, we will automatically figure out how to
implement both insert() and deleteMin()

88

Binomial heaps: merge(H1, H2)
Heaps

WSU

• Let n1 be the number of nodes in H1

• Let n2 be the number of nodes in H2

• Therefore, the new heap is going to have n1 + n2 nodes

• Assume n = n1 + n2

• Logic:

• Merge trees of same height, starting from lowest height trees

• If only one tree of a given height, then just copy that

• Otherwise, need to do carryover (just like adding two binary numbers)

89

Binomial heaps: merge(H1, H2)
Heaps

WSU

90

Binomial heaps: merge(H1, H2)
Heaps

WSU

91

B0
B1 B2Copy B0 of H2

Merge
Merge

Binomial heaps: merge(H1, H2)
Heaps

WSU

92

H1 H2

Compare roots

Note:
Merge is defined for only binomial
trees with the same height

Binomial heaps: merge(H1, H2)
Heaps

WSU

93

B1 B1 B2

Binomial heaps: merge(H1, H2)
Heaps

WSU

94

B2 B2 B2

Binomial heaps: merge(H1, H2)
Heaps

WSU

95

Merge any two and leave
the third as carry-over

B2 B2 B2

Binomial heaps: merge(H1, H2)
Heaps

WSU

96

B2 B3

B2 B2 B2

Binomial heaps: merge(H1, H2)
Heaps

WSU

97

B2 B3

OR

B2 B2 B2

Binomial heaps: merge(H1, H2)
Heaps

WSU

98

B2 B3

OR

B2 B2 B2

Binomial heaps: merge(H1, H2)
Heaps

WSU

99

Merge cost ∝ log(max{n1, n2}) = O(log n) comparisons

Merge: time complexity
Heaps

WSU

• Merge takes O(log n) comparisons

• Therefore:

• insert and deleteMin also take O(log n)

• It can be further proved that an uninterrupted sequence of m insert
operations takes only O(m) time per operation, implying O(1) amortize
time per insert

100

Binomial heaps: time complexity
Heaps

WSU

• insert
• O(lg(n)) worst-case

• O(1) amortized time if insertion is done in an uninterrupted sequence (i.e.,
without being intervened by deleteMins)

• deleteMin, findMin
• O(lg(n)) worst-case

• merge
• O(lg(n)) worst-case

101

Binomial heaps: summary
Heaps

WSU

• Binomial heap-based queues maintain the minimum or maximum
element of a set

• Support O(log N) operations worst-case
• Especially merge

• Many applications

• Merge jobs from multiple workers

102

Time complexity per operation
Heaps

WSU

103

findMin insert deleteMin merge

Binary heap O(1) O(log(n)) worst-case
O(1) amortized for
buildHeap

O(log(n)) O(n)

Leftist heap O(1) O(log(n)) O(log(n)) O(log(n))

Skew heap O(1) O(log(n)) O(log(n)) O(log(n))

Binomial heap O(1) O(log(n)) worst-case
O(1) amortized for
sequence of n inserts

O(log(n)) O(log(n))

Fibonacci heap O(1) O(1) O(log(n)) O(1)

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Motivation
	Slide 3: Applications
	Slide 4: Using priority queues
	Slide 5: Priority queues: simple options
	Slide 6: Priority queues: simple options
	Slide 7: Time complexity per operation
	Slide 8: Binary heap
	Slide 9: Binary heap: structure property
	Slide 10: Binary heap: heap-order property
	Slide 11: Binary heap: heap-order property
	Slide 12: Implementation: arrays
	Slide 13: Binary heap: class interface
	Slide 14: Binary heap: insert
	Slide 15: Binary heap: insert
	Slide 16: Binary heap: insert
	Slide 17: Binary heap: insert
	Slide 18: Binary heap: insert
	Slide 19: Heap insert: implementation
	Slide 20: Heap insert: implementation
	Slide 21: Heap insert: implementation
	Slide 22: Heap insert: implementation
	Slide 23: Heap insert: implementation
	Slide 24: Heap insert: implementation
	Slide 25: Heap deleteMin
	Slide 26: Heap deleteMin
	Slide 27: Heap deleteMin
	Slide 28: Heap deleteMin
	Slide 29: Heap deleteMin
	Slide 30: Heap deleteMin
	Slide 31: Heap deleteMin
	Slide 32: Heap deleteMin
	Slide 33: Heap deleteMin
	Slide 34: Other heap operations
	Slide 35: Build a heap
	Slide 36: Build a heap
	Slide 37: Build a heap
	Slide 38: Build a heap
	Slide 39: Build a heap
	Slide 40: Build a heap
	Slide 41: Build a heap
	Slide 42: Build a heap
	Slide 43: Build a heap
	Slide 44: Build a heap
	Slide 45: Build a heap
	Slide 46: Build a heap
	Slide 47: Build a heap
	Slide 48: Build a heap
	Slide 49: Build a heap
	Slide 50: Build a heap
	Slide 51: Build a heap
	Slide 52: Build a heap
	Slide 53: Build a heap
	Slide 54: Build a heap
	Slide 55: Build a heap
	Slide 56: Build a heap
	Slide 57: Build a heap
	Slide 58: Build a heap
	Slide 59: buildHeap
	Slide 60: buildHeap implementation
	Slide 61: buildHeap time complexity
	Slide 62: Binary heap worst-case analysis
	Slide 63: Binary heap v.s. AVL tree
	Slide 64: Application: selection problem
	Slide 65: Selection using a minHeap
	Slide 66: Other heaps
	Slide 67: Time complexity per operation
	Slide 68: Priority queues in STL
	Slide 69: Binomial heap
	Slide 70: Definition: binomial tree
	Slide 71: Definition: binomial tree
	Slide 72: Binomial heaps: example
	Slide 73: Binomial heaps: example
	Slide 74: Binomial heaps: example
	Slide 75: Binomial heaps: example
	Slide 76: Binomial heaps: example
	Slide 77: Binomial heap property
	Slide 78: Binomial heaps: heap-order
	Slide 79: Definition: binomial heaps
	Slide 80: Binomial heaps: examples
	Slide 81: Key properties
	Slide 82: Binomial heaps: implementation
	Slide 83: Binomial heaps: operations
	Slide 84: Binomial heaps: deleteMin()
	Slide 85: Binomial heaps: deleteMin()
	Slide 86: deleteMin() example
	Slide 87: deleteMin() example
	Slide 88: Binomial heaps: insert(x)
	Slide 89: Binomial heaps: merge(H1, H2)
	Slide 90: Binomial heaps: merge(H1, H2)
	Slide 91: Binomial heaps: merge(H1, H2)
	Slide 92: Binomial heaps: merge(H1, H2)
	Slide 93: Binomial heaps: merge(H1, H2)
	Slide 94: Binomial heaps: merge(H1, H2)
	Slide 95: Binomial heaps: merge(H1, H2)
	Slide 96: Binomial heaps: merge(H1, H2)
	Slide 97: Binomial heaps: merge(H1, H2)
	Slide 98: Binomial heaps: merge(H1, H2)
	Slide 99: Binomial heaps: merge(H1, H2)
	Slide 100: Merge: time complexity
	Slide 101: Binomial heaps: time complexity
	Slide 102: Binomial heaps: summary
	Slide 103: Time complexity per operation

