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Motivation
Heaps

WSU

• Queues are a standard mechanism for ordering tasks on a first-come, 
first-served basis

• However, some tasks may be more important or timely than others 
(higher priority)

• Priority queues

• Store tasks using a partial ordering based on priority

• Ensure highest priority task at head of queue

• Heaps are the underlying data structure of priority queues
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Applications
Heaps
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• Operating system scheduling
• Process jobs by priority

• Graph algorithms
• Find shortest path

• Event simulation
• Look up next event to happen
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Using priority queues
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• Main operations

• insert (i.e., enqueue)
• Dynamic insert

• specification of a priority level (0-high, 1,2.. Low)

• deleteMin (i.e., dequeue)
• Finds the current minimum element (read: “highest priority”) in the queue, 

deletes it from the queue, and returns it

• Performance goal is for operations to be “fast”
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Priority queues: simple options
Heaps
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• Unordered linked list
• O(1) insert

• O(n) deleteMin

• Ordered linked list
• O(n) insert

• O(1) deleteMin

• Ordered array
• O(lg(n) + n) insert

• O(n) deleteMin
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Priority queues: simple options
Heaps
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• BST

• Θ(lg(n)) average-case for insert and deleteMin

• O(n) worse-case for insert and deleteMin

• Self-based BST

• O(lg(n)) worse-case for findMin, insert and delteMin

• Complicated implementation
• AVL trees: height maintenance for every node

• R-B trees: complicated implementations for many cases

• Bottom-up procedure

• Top-down procedure
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Search, insert and 
delete any data cost 

O(lg(n)): overkill

Can we do better for 
findMin and deleteMin?



Time complexity per operation
Heaps
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findMin insert deleteMin merge

Binary heap O(1) O(log(n)) worst-case
O(1) amortized for 
buildHeap

O(log(n)) O(n)

Leftist heap O(1) O(log(n)) O(log(n)) O(log(n))

Skew heap O(1) O(log(n)) O(log(n)) O(log(n))

Binomial heap O(1) O(log(n)) worst-case
O(1) amortized for 
sequence of n inserts

O(log(n)) O(log(n))

Fibonacci heap O(1) O(1) O(log(n)) O(1)



Binary heap
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• A binary heap is a binary tree with two properties

• Structure property

• Heap-order property
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Binary heap: structure property
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• A binary heap is a complete 
binary tree
• Each level (except possibly the 

bottom most level) is 
completely filled

• The bottom most level may be 
partially filled (from left to 
right)

• Height of a complete binary 
tree with N elements is 
log _2(𝑁)
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With a simple array 
representation



Binary heap: heap-order property
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• Heap-order property (for a “MinHeap”)

• For every node X, key(parent(X)) ≤ key(X)

• Except root node, which has no parent

• Thus, minimum key always at root

• Alternatively, for a “MaxHeap”, always keep the maximum key at the 
root

• Insert and deleteMin must maintain heap-order property
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Binary heap: heap-order property
Heaps
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≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤

Duplicates allowed No order implied for elements 
that do not share ancestor-

descendant relation



Implementation: arrays
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Given element at position i in the array
• leftChild(i) = 2i
• rightChild(i) = 2i + 1
• parent(i) = i/2

Parent 
B: at 2

Left child 
H: at 8

Right child 
I: at 9

D: at 4



Binary heap: class interface
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store the heap 
as a vector

Fix heap properties 
after deleteMin

Find the min value 
without deleting it

A general delete() is not 
important for heaps, but 

can be implemented

An efficient way to build 
a heap with n nodes



Binary heap: insert
Heaps
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• Insert new element into the heap at the next available slot (“hole”)

• According to maintaining a complete binary tree

• Then, “percolate” the element up the heap while heap-order property 
not satisfied
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Binary heap: insert
Heaps
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Insert new element into the heap 
at the next available slot (“hole”) Structure property 



Binary heap: insert
Heaps
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Insert new element into the heap 
at the next available slot (“hole”) Heap-order property 
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Binary heap: insert
Heaps
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“percolate” the element up 
the  heap while heap-order 

property not satisfied

14
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Binary heap: insert
Heaps
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14

Heap-order property 



Heap insert: implementation
Heaps
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Resize the array



Heap insert: implementation
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Create the hole



Heap insert: implementation
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Temporary storage



Heap insert: implementation
Heaps
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Temporary storage Find the position 
for “hole”



Heap insert: implementation
Heaps
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Temporary storage Find the position 
for “hole”

Restore the value



Heap insert: implementation
Heaps
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insert: 
complexity = height = O(log(N))

in worst case



Heap deleteMin
Heaps
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• Minimum element is always at the root

• Heap decreases by one in size

• Move last element into hole at root

• Percolate down while heap-order property not satisfied
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So findMin requires 
O(1) in worst case



Heap deleteMin
Heaps
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Minimum element is 
always at the root

31

Percolate down while 
heap-order property 
not satisfied

Move last element 
into hole at root



Heap deleteMin
Heaps
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31

Percolate down while 
heap-order property 
not satisfied

31

Percolate down while 
heap-order property 
not satisfied



Heap deleteMin
Heaps
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Heap-order property 
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Heap deleteMin
Heaps
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Heap deleteMin
Heaps
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hole: the index (1) used 
for root in deleteMin()



Heap deleteMin
Heaps
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Index for 
left child

Root value If right child is:
(1) present and 
(2) smaller than left child
Then we use the right child

Violate heap-order property:
Move the selected child node 
to hole

hole: the index (1) used 
for root in deleteMin()



Heap deleteMin
Heaps
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Root value

Hole index  
selected child index

hole: the index (1) used 
for root in deleteMin()



Heap deleteMin
Heaps
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percolateDown (deleteMin): 
complexity = height = O(log(N)) 

in worst case



Other heap operations
Heaps
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• decreaseKey(p,v)
• Lowers the current value of item p to new priority value v

• Need to percolate up

• E.g., promote a job

• increaseKey(p,v)
• Increases the current value of item p to new priority value v

• Need to percolate down

• E.g., demote a job

• remove(p)
• First, decreaseKey(p,-∞)

• Then, deleteMin

• E.g., abort/cancel a job
34

Time complexity for 
three functions: 

O(lg(n))

A smaller key: 
higher priority

A larger key: 
lower priority



Build a heap
Heaps
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• N successive inserts

• Each insert:
• O(1) average [1]

• O(log(N)) worst-case

• Total time complexity 
• O(N) average

• O(N log(N)) worst-case

• A better method buildHeap(): O(N) worst-case

35
[1] Porter, Thomas, and Istvan Simon. "Random insertion into a priority queue structure." IEEE Transactions on Software Engineering 3 (1975): 292-298.



Build a heap
Heaps

WSU

• buildHeap():

• Randomly populate initial heap with structure property

• Perform a percolate-down from each internal node (from element 
H[size/2] to H[1])
• → To take care of heap-order property
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Build a heap
Heaps
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Randomly populate 
initial heap (N=15)

150 80 40 30 10 70 110 100 …

0         1          2          3         4         5         6          7         8

Insert: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Array implementation



Build a heap
Heaps

WSU
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Randomly populate 
initial heap (N=15)

structure property 

150 80 40 30 10 70 110 100 …

0         1          2          3         4         5         6          7         8

Insert: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Array implementation



Build a heap
Heaps
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Perform a percolate-
down from each internal 
node (from element 
H[size/2] to H[1])

150 80 40 30 10 70 110 100 …

0         1          2          3         4         5         6          7         8

Last internal node

Heap-order 
property 

:
do nothing



Build a heap
Heaps
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150 80 40 30 10 70 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order 
property :
Swap with 
left child



Build a heap
Heaps
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150 80 40 30 10 50 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order 
property :
Swap with 
left child



Build a heap
Heaps
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150 80 40 30 10 50 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order 
property 



Build a heap
Heaps
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150 80 40 30 10 50 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order property 
:

Swap with right child



Build a heap
Heaps
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150 80 40 20 10 50 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order property 
:

Swap with right child



Build a heap
Heaps
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150 80 40 20 10 50 110 100 …

0         1          2          3         4         5         6          7         8



Build a heap
Heaps
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150 80 40 20 10 50 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order 
property 



Build a heap
Heaps
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Heap-order property :
 

150 80 40 20 10 50 110 100 …

0         1          2          3         4         5         6          7         8



Build a heap
Heaps
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Heap-order property :
Swap with right child

150 80 40 20 10 50 110 100 …

0         1          2          3         4         5         6          7         8



Build a heap
Heaps
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150 10 40 20 80 50 110 100 …

0         1          2          3         4         5 6          7         8

Heap-order property :
Swap with right child

10

80



Build a heap
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150 10 40 20 80 50 110 100 …

0         1          2          3         4         5 6          7         8

Heap-order property :
Swap with right child

10

80

Heap-order property :
Swap with right child



Build a heap
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150 10 40 20 60 50 110 100 …

0         1          2          3         4         5         6          7         8



Build a heap
Heaps
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150 10 40 20 60 50 110 100 …

0         1          2          3         4         5         6          7         8

Heap-order 
property 



Build a heap
Heaps
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150 10 40 20 60 50 110 100 …

0         1 2          3         4         5         6          7         8

Heap-order property :
Swap with left child



Build a heap
Heaps
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10 150 40 20 60 50 110 100 …

0         1 2          3         4         5         6          7         8

Heap-order property :
Swap with left child

10

150

Heap-order property :
Swap with left child



Build a heap
Heaps
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10 20 40 150 60 50 110 100 …

0         1 2          3         4         5         6          7         8

10

150

20



Build a heap
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10

150

20

Heap-order property :
Swap with right child

10 20 40 150 60 50 110 100 …

0         1 2          3         4         5         6          7         8



Build a heap
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10

150

20

Heap-order property :
Swap with right child 10

30

20

150

10 20 40 30 60 50 110 100 …

0         1 2          3         4         5         6          7         8



Build a heap
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10

150

20

Heap-order property :
Swap with right child 10

30

20

150

Heap-order 
property 

10 20 40 30 60 50 110 100 …

0         1 2          3         4         5         6          7         8



buildHeap
Heaps
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• The key point is to find the lowest and right most internal node
• aka last internal node

• Offset of the last internal node = floor (offset of the last node / 2)

• Why? Parent(i) = at position floor(i/2)
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Array representation



buildHeap implementation
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WSU
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Already implemented 
in Figure 6.12

Random populate



buildHeap time complexity
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• Run-time = ?

• O(sum of the heights of all the internal nodes)  

• because we may have to percolate all the way down to fix every 
internal node in the worst-case

• Theorem 6.1: For a perfect binary tree of height h, the sum of  heights 
of all nodes is 2h+1 – 1 – (h + 1)

• Since h=lg(N), then sum of heights is O(N)

• Implication:

• Each insertion costs O(1) amortized time
61

Will be slightly 
better in practice



Binary heap worst-case analysis
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• Height: log(𝑁)

• insert: O(lg(N)) for each insert

• deleteMin: O(lg(N)) 

• decreaseKey: O(lg(N)) 

• increaseKey: O(lg(N)) 

• remove: O(lg(N)) 
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Binary heap v.s. AVL tree
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• Binary Heap does not require extra space for pointers

• Binary Heap is easier to implement

• Although operations are of same time complexity, constants in BST 
are higher
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Application: selection problem
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• Given a list of n elements, find the kth smallest element

• Algorithm 1:
• Sort the list: O(n log n)

• Pick the kth element: O(1)

• A better algorithm:

• Use a binary heap (minHeap)

64



Selection using a minHeap
Heaps
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• Input: n elements

• Algorithm:
1. buildHeap(n)

2. Perform k deleteMin() operations

3. Report the kth deleteMin output

• Total run-time = O(n + k log(n) + 1)

• If k = O(n/log n) then the run-time becomes O(n)

65

O(n)
O(k log(n))

O(1)



Other heaps
Heaps

WSU

• Binomial Heaps

• d-Heaps

• Generalization of binary heaps (ie., 2-Heaps)

• Leftist Heaps
• Supports merging of two heaps in o(m+n) time (ie., sub-  linear)

• Skew Heaps
• O(log n) amortized run-time

• Fibonacci Heaps

66



Time complexity per operation
Heaps

WSU

67

findMin insert deleteMin merge

Binary heap O(1) O(log(n)) worst-case
O(1) amortized for 
buildHeap

O(log(n)) O(n)

Leftist heap O(1) O(log(n)) O(log(n)) O(log(n))

Skew heap O(1) O(log(n)) O(log(n)) O(log(n))

Binomial heap O(1) O(log(n)) worst-case
O(1) amortized for 
sequence of n inserts

O(log(n)) O(log(n))

Fibonacci heap O(1) O(1) O(log(n)) O(1)



Priority queues in STL
Heaps
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• Uses Binary heap

• Default is maxHeap

• Methods
• Push, top, pop, empty, clear

• For minHeap: 
• declare priority_queue as: 

• priority_queue<int, vector<int>, greater<int>> Q;

68

#include <iostream>

#include <queue>

using namespace std;

int main() {

    priority_queue<int> Q;

    Q.push(10);

    Q.push(3);

    Q.push(12);

    cout << Q.top() << endl;

    Q.pop();

    cout << Q.top() << endl;

    return 0;

}



Binomial heap
Heaps
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• A binomial heap is a forest of heap-ordered binomial trees, satisfying:

• Structure property

• Heap-order property

• A binomial heap is different from binary heap in that:

• Its structure property is totally different from binary heap

• Its heap-order property (within each binomial tree) is the same as 
in a binary heap
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Definition: binomial tree 
Heaps
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• A binomial tree of height k is denoted 𝐵𝑘:
• consists of a root with children 𝐵0, 𝐵1, ... , 𝐵𝑘−1

• has 2𝑘 nodes

• # of nodes at depth d → 𝑘
𝑑

70

Consists of a root with 
children 𝐵0, 𝐵1, 𝐵2,

root

𝐵0
𝐵1

𝐵2



Definition: binomial tree 
Heaps
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• A binomial tree of height k is denoted 𝐵𝑘:
• consists of a root with children 𝐵0, 𝐵1, ... , 𝐵𝑘−1

• has 2𝑘 nodes

• # of nodes at depth d → 𝑘
𝑑
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Depth

d=0

d=1

d=2

d=3

#nodes

3

0

3

1
 

3

2
 

3

3
 

𝑘

𝑑
=

𝑘!

𝑑! 𝑘 − 𝑑 !
is the form of the coefficients 
in binomial theorem

d-combination of k elements



Binomial heaps: example
Heaps

WSU
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A binomial heap (a 
forest of binomial 
trees) with N = 31

Binary representation of N:
N = 31 = (1 1 1 1 1)2



Binomial heaps: example
Heaps
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A binomial heap (a 
forest of binomial 
trees) with N = 27

Binary representation of N:
N = 27 = (1 1 0 1 1)2



Binomial heaps: example
Heaps
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A binomial heap (a 
forest of binomial 
trees) with N = 23

Binary representation of N:
N = 23 = (1 0 1 1 1)2



Binomial heaps: example
Heaps
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B𝑖 = B𝑖−1 + B𝑖−1



Binomial heaps: example
Heaps

WSU
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B𝑖 = B𝑖−1 + B𝑖−1

B2

B2



Binomial heap property
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• Lemma: There exists a binomial heap for every positive value of n

• Proof:

• All values of n can be represented in binary representation
• Have one binomial tree for each power of two with co-efficient of 1

• Eg., 10 → (1010)2 → forest contains {B3, B1}
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Binomial heaps: heap-order
Heaps
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• Each binomial tree should contain the minimum element at the root 
of every  subtree

• Just like binary heap, except that the tree here is a binomial tree 
structure (and not a complete binary tree)

• The order of elements across binomial trees is irrelevant
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Definition: binomial heaps
Heaps

WSU

• A binomial heap of n nodes is:

• (Structure property) A forest of binomial trees as described by the 
binary representation of n

• (Heap-Order Property) Each binomial tree is a min-heap or a max-
heap

79



Binomial heaps: examples
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N = 6 = (1 1 0)2 = {B2, B1}

N = 7 = (1 1 1)2 = {B2, B1, B0}

The order of elements across 
binomial trees is irrelevant



Key properties
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• Could there be multiple trees of the same height in a binomial tree?
• no

• What is the upper bound of i on Bi in a binomial heap of n nodes?
• floor(log_2(n))

• Given n, can we tell (for sure) if Bk exists?
• Bk exists if and only if:

• the kth least significant bit is 1

• in the binary representation of n

• e.g., (1010)2 

81



Binomial heaps: implementation
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Similar to a bit-based 
representation of a 
binary number n

Shown using the left-
child, right-sibling 
pointer method

Maintain a 
linked list of 
tree pointers 
(for the forest)

B7              B6              B5              B4              B3              B2              B1              B0



Binomial heaps: operations
Heaps
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• deleteMin()

• insert(x)

• merge(H1, H2)

83

H1, H2: two 
binomial heaps



Binomial heaps: deleteMin()
Heaps
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• Goal: 

• Given a binomial heap, H, find the minimum and delete it

• Observation: 

• The root of each binomial tree in H contains its minimum element

• Approach: Therefore, return the minimum of all the roots (minimums)

• Complexity: O(log n) comparisons (why?)

84



Binomial heaps: deleteMin()
Heaps

WSU

• Goal: 

• Given a binomial heap, H, find the minimum and delete it

• Observation: 

• The root of each binomial tree in H contains its minimum element

• Approach: Therefore, return the minimum of all the roots (minimums)

• Complexity: O(log(n)) comparisons (why?)

• because there are at most O(log n) trees

85



deleteMin() example
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B0 B2 B3



deleteMin() example
Heaps
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B0 B2 B3

B0’

B1’

B2’

New heap : merge { B0, B2 } & { B0’, B1’, B2’ }



Binomial heaps: insert(x)
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• Goal: 

• To insert a new element x into a binomial heap H

• Observation:

• Element x can be viewed as a single  element binomial heap

• insert (H,x) ➔ merge(H, {x})

• If we decide how to do merge, we will automatically figure out how to 
implement both insert() and deleteMin()
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Binomial heaps: merge(H1, H2)
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• Let n1  be the number of nodes in H1

• Let n2  be the number of nodes in H2

• Therefore, the new heap is going to have n1 + n2 nodes

• Assume n = n1 + n2

• Logic:

• Merge trees of same height, starting from lowest height trees

• If only one tree of a given height, then just copy that

• Otherwise, need to do carryover (just like adding two binary numbers)

89



Binomial heaps: merge(H1, H2)
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Binomial heaps: merge(H1, H2)
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B0
B1 B2Copy B0 of H2

Merge
Merge



Binomial heaps: merge(H1, H2)
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H1 H2

Compare roots

Note: 
Merge is defined for only binomial 
trees with the same height



Binomial heaps: merge(H1, H2)
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B1 B1 B2



Binomial heaps: merge(H1, H2)
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B2 B2 B2



Binomial heaps: merge(H1, H2)
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Merge any two and leave 
the third as carry-over

B2 B2 B2



Binomial heaps: merge(H1, H2)
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B2 B3

B2 B2 B2



Binomial heaps: merge(H1, H2)
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B2 B3

OR

B2 B2 B2



Binomial heaps: merge(H1, H2)
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B2 B3

OR

B2 B2 B2



Binomial heaps: merge(H1, H2)
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Merge cost ∝ log(max{n1, n2}) = O(log n) comparisons



Merge: time complexity
Heaps
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• Merge takes O(log n) comparisons

• Therefore:

• insert and deleteMin also take O(log n)

• It can be further proved that an uninterrupted sequence of m insert 
operations takes only O(m) time per operation, implying O(1) amortize 
time per insert

100



Binomial heaps: time complexity
Heaps
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• insert
• O(lg(n)) worst-case

• O(1) amortized time if insertion is done in an  uninterrupted sequence (i.e., 
without being intervened by deleteMins)

• deleteMin, findMin
• O(lg(n)) worst-case

• merge
• O(lg(n)) worst-case

101



Binomial heaps: summary
Heaps
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• Binomial heap-based queues maintain the minimum or maximum 
element of a set

• Support O(log N) operations worst-case
• Especially merge

• Many applications

• Merge jobs from multiple workers

102



Time complexity per operation
Heaps
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findMin insert deleteMin merge

Binary heap O(1) O(log(n)) worst-case
O(1) amortized for 
buildHeap

O(log(n)) O(n)

Leftist heap O(1) O(log(n)) O(log(n)) O(log(n))

Skew heap O(1) O(log(n)) O(log(n)) O(log(n))

Binomial heap O(1) O(log(n)) worst-case
O(1) amortized for 
sequence of n inserts

O(log(n)) O(log(n))

Fibonacci heap O(1) O(1) O(log(n)) O(1)
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