
Introduction to Parallel
Programming III

Center for Institutional Research
Computing

Slides for the book "An introduction to Parallel
Programming", by Peter Pacheco (available from the
publisher
website): http://booksite.elsevier.com/9780123
742605/

Copyright © 2010, Elsevier Inc. All rights
Reserved

1

http://booksite.elsevier.com/9780123742605/

Taking Timings

• What is time?

Copyright © 2010, Elsevier
Inc. All rights Reserved 2

Taking Timings

• What is time?
• Start to finish?

Copyright © 2010, Elsevier
Inc. All rights Reserved 3

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?

Copyright © 2010, Elsevier
Inc. All rights Reserved 4

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?
• CPU time?

Copyright © 2010, Elsevier
Inc. All rights Reserved 5

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?
• CPU time?

Copyright © 2010, Elsevier
Inc. All rights Reserved 6

user-cpu:
time spent in user code

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?
• CPU time?

Copyright © 2010, Elsevier
Inc. All rights Reserved 7

user-cpu:
time spent in user code

system-cpu time:
time spent in kernel cod

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?
• CPU time?

• Wall clock time?

Copyright © 2010, Elsevier
Inc. All rights Reserved 8

user-cpu:
time spent in user code

system-cpu time:
time spent in kernel cod

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?
• CPU time?

• Wall clock time?

Copyright © 2010, Elsevier
Inc. All rights Reserved 9

user-cpu:
time spent in user code

system-cpu time:
time spent in kernel code

Actual time elapsed between the start of the process and 'now'

Taking Timings

Copyright © 2010, Elsevier
Inc. All rights Reserved 10

Taking Timings

Copyright © 2010, Elsevier
Inc. All rights Reserved 11

Taking Timings

Copyright © 2010, Elsevier
Inc. All rights Reserved 12

Taking Timings

Copyright © 2010, Elsevier
Inc. All rights Reserved 13

wall clock time rather than CPU time:
study scalability and speedup

• Number of threads = p
• Serial run-time = Tserial
• Parallel run-time = Tparallel

Copyright © 2010, Elsevier
Inc. All rights Reserved

Speedup

Tserial

Tparallel
S =

14

Scalability

• In general, a problem is scalable if it can handle
ever increasing problem sizes.

• If we increase the number of processes/threads
and keep the efficiency fixed without increasing
problem size, the problem is strongly scalable.

• If we keep the efficiency fixed by increasing the
problem size at the same rate as we increase
the number of processes/threads, the problem is
weakly scalable.

Copyright © 2010, Elsevier
Inc. All rights Reserved 15

Studying Scalability

Input
size (n)

Number of threads (p)

1 2 4 8 16

1,000

2,000

4,000

8,000

16,000

Table records the parallel runtime (in seconds) for varying values of n and p.

16

It is conventional to test scalability in powers of two (or by doubling n and p).

Studying Scalability

Input
size (n)

Number of threads (p)

1 2 4 8 16

1,000 800 410 201 150 100

2,000 1,601 802 409 210 120

4,000 3,100 1,504 789 399 208

8,000 6,010 3,005 1,500 758 376

16,000 12,000 6,000 3,001 1,509 758

It is conventional to test scalability in powers of two (or by doubling n and p).

Table records the parallel runtime (in seconds) for varying values of n and p.

Strong scaling
behavior

Weak scaling
behavior

17

Studying Scalability

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16

n=1,000
n=2,000
n=4,000
n=8,000
n=16,000

p

Ti
m

e
(s

ec
)

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16

n=1,000
n=2,000
n=4,000
n=8,000
n=16,000
Ideal

Sp
ee

du
p

p

Copyright © 2010, Elsevier Inc. All rights
Reserved

18

x1 x1
+2

x3 x4 x5 x6 x7

+1 +2 +3 +4 +5 +6

x2

x1+2
+3

x1+2+
3+4

x1+2+3+
4+5

x1+2+3+4
+5+6

x1+2+3+4+5
+6+7

x1+2+3+4+5+
6+7+8

x8

Serial Process (1 thread, 7 operations)
Serial vs. Parallel Reduction

19

+7

x1+2+3+4+5+
6+7+8

x5+6+7+8x1+2+3+4

x1+2x1+2x1+2

x1 x2 x3 x4 x5 x6 x7 x8

t1 t2 t3 t4 t5 t6 t7 t8

x1+2
+1

+2

+3

Parallel Process (8 threads, 3 operations)

20

log2 p
stages

Reduction operators
• A reduction operator is a binary operation

(such as addition or multiplication).
• A reduction is a computation that

repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result.

• All of the intermediate results of the
operation should be stored in the same
variable: the reduction variable.

Copyright © 2010, Elsevier
Inc. All rights Reserved 21

Mutual exclusion

Copyright © 2010, Elsevier
Inc. All rights Reserved

pragma omp critical
global_result += my_result ;

only one thread can execute
the following structured block at a time

22

Synchronization

• Synchronization imposes order constraints
and is used to protect access to shared data

• Types of synchronization:
– critical
– atomic
– locks
– others (barrier, ordered, flush)

• We will work on an exercise involving critical,
atomic, and locks

Copyright © 2010, Elsevier Inc. All rights
Reserved

23

Critical

#pragma omp parallel for schedule(static) shared(a)
for(i = 0; i < n; i++)
{

#pragma omp critical
{

a = a+1;
}

}
Threads wait here: only one thread at a
time does the operation: “a = a+1”. So
this is a piece of sequential code inside
the for loop.

Copyright © 2010, Elsevier Inc. All rights
Reserved

24

Atomic
• Atomic provides mutual exclusion but only applies to the load/update of a

memory location
• It is applied only to the (single) assignment statement that immediately

follows it
• Atomic construct may only be used together with an expression statement

with one of operations: +, *, -, /, &, ^, |, <<, >>
• Atomic construct does not prevent multiple threads from executing the

function() at the same time (see the example below)

Code example:
int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++; i<n)
{

#pragma omp atomic
ic = ic + function(c);

}

Atomic only protects the
update of ic

Copyright © 2010, Elsevier Inc. All rights
Reserved

25

Atomic
• Atomic provides mutual exclusion but only applies to the load/update of a

memory location
• It is applied only to the (single) assignment statement that immediately

follows it
• Atomic construct may only be used together with an expression statement

with one of operations: +, *, -, /, &, ^, |, <<, >>
• Atomic construct does not prevent multiple threads from executing the

function() at the same time (see the example below)

Code example:
int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++; i<n)
{

#pragma omp atomic
ic = ic + function(c);

}

Atomic only protects the
update of ic

Copyright © 2010, Elsevier Inc. All rights
Reserved

26

Locks

• A lock consists of a data structure and functions
that allow the programmer to explicitly enforce
mutual exclusion in a critical section.

27

Acquire lock(i)
// critical section
Release lock(i)

Threads queue up

Only one
thread executes

Difference from critical
section:
- You can have multiple

locks
- A thread can try for any

specific lock

- => we can use this to
acquire data-level
locks

e.g., two threads can access different array indices without waiting.

Illustration of Locking Operation
• The protected region contains the

update of a shared variable
• One thread acquires the lock and

performs the update
• Meanwhile, other threads perform

some other work
• When the lock is released again,

the other threads perform the
update

Copyright © 2010, Elsevier Inc. All rights
Reserved

28

A Locks Code Example
long long int a=0;
long long int i;

omp_lock_t my_lock;
// init lock
omp_init_lock(&my_lock);
#pragma omp parallel for
for(i = 0; i < n; i++)
{

omp_set_lock(&my_lock);
a+=1;
omp_unset_lock(&my_lock);

}
omp_destroy_lock(&my_lock);

1. Define lock variable

2. Initialize lock

3. Set lock

4. Unset lock

5. Destroy lock

Compiling and running sync.c:
gcc −g −Wall −fopenmp −o sync sync.c
./sync #of-iteration #of-threadsCopyright © 2010, Elsevier Inc. All rights

Reserved
29

Some Caveats

1. You shouldn’t mix the different types of
mutual exclusion for a single critical
section.

2. There is no guarantee of fairness in
mutual exclusion constructs.

3. It can be dangerous to “nest” mutual
exclusion constructs.

Copyright © 2010, Elsevier
Inc. All rights Reserved 30

The Runtime Schedule Type

• The system uses the environment variable
OMP_SCHEDULE to determine at run-
time how to schedule the loop.

• The OMP_SCHEDULE environment
variable can take on any of the values that
can be used for a static, dynamic, or
guided schedule.

Copyright © 2010, Elsevier
Inc. All rights Reserved 31

• Default schedule:

Copyright © 2010, Elsevier
Inc. All rights Reserved

Loop.c example

#pragma omp parallel for schedule(static)
private(a)//creates N threads to run the
next enclosed block

for(i = 0; i < loops; i++)
{

a = 6+7*8;
}

32

schedule (type , chunksize)

– Static: Assigned before the loop is executed.
– dynamic or guided: Assigned while the loop is

executing.
– auto/ runtime: Determined by the compiler and/or the

run-time system

Copyright © 2010, Elsevier
Inc. All rights Reserved

Controls how loop iterations are assigned

• Consecutive iterations are broken into chunks
• Total number = chunksize
• Positive integer
• Default is 1

33

schedule types can prevent load
imbalance

Th
re

ad
s

Time

Static schedule Dynamic schedulevs

0
1
2

3

4
5

6
7

0
1
2

3 4
5
6
7

Time
Copyright © 2010, Elsevier Inc. All rights

Reserved
34

Thread finishing
first

Thread finishing
last

Idle time

Static: default
Static, n: set chunksize

Static

Static, n

Dynamic

Guided

iteration number

0

0

0

0

N-1

N-1

N-1

N-1

Thread 0 Thread 1 Thread 2 Thread 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

T
2

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

T
0

Thre
ad 1

Thre
ad 1

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Th
r0

Th
r1

Th
r2

Th
r3

T
0

T
1

T
2

T
3

T
0

T
1 2

chunksize

Copyright © 2010, Elsevier
Inc. All rights Reserved

35

Dynamic: thread executes a chunk
when done, it requests another one

Static

Static, n

Dynamic

Guided

iteration number

0

0

0

0

N-1

N-1

N-1

N-1

Thread 0 Thread 1 Thread 2 Thread 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

T
2

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

T
0

Thre
ad 1

Thre
ad 1

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Th
r0

Th
r1

Th
r2

Th
r3

T
0

T
1

T
2

T
3

T
0

T
1 2

Copyright © 2010, Elsevier
Inc. All rights Reserved

36

Guided: thread executes a chunk
when done, it requests another one

new chunks decrease in size (until
chunksize is met)

Static

Static, n

Dynamic

Guided

iteration number

0

0

0

0

N-1

N-1

N-1

N-1

Thread 0 Thread 1 Thread 2 Thread 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

T
2

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

T
0

Thre
ad 1

Thre
ad 1

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

Th
r0

Th
r1

Th
r2

Th
r3

T
0

T
1

T
2

T
3

T
0

T
1 2

Copyright © 2010, Elsevier
Inc. All rights Reserved

37

Matrix-vector multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved 38

M x V = X: Parallelization Strategies

39

=x

Row Decomposition

Thread 0

Thread 1

Thread 2

Thread 3

Thre
ad 0

Thre
ad 1

Thre
ad 2

Thre
ad 3

m x n n x 1 m x 1

Ø Each thread gets m/p rows
Ø Time taken is proportional to: (mn)/p : per thread
Ø No need for any synchronization (static scheduling will do)

M x V = X: Parallelization Strategies

40

=x

Column Decomposition

Threa
d 0

Thread
1

Thread
2

Thread
3

m x n n x 1 m x 1

Ø Each thread gets n/p columns
Ø Time taken is proportional to: (mn)/p + time for reduction : per thread

x0 + x1 + x2 + x3

X [i]

Reduction

