
Introduction to Parallel
Programming II

Center for Institutional Research
Computing

Slides for the book "An introduction to Parallel
Programming", by Peter Pacheco (available from the
publisher
website): http://booksite.elsevier.com/9780123
742605/

Copyright © 2010, Elsevier Inc. All rights
Reserved

1

http://booksite.elsevier.com/9780123742605/

OpenMP for shared memory
multithreaded programming

• OpenMP is an implementation of
multithreading

Copyright © 2010, Elsevier Inc. All rights
Reserved

2

OpenMP for shared memory
multithreaded programming

• OpenMP is an implementation of
multithreading

• A primary thread (a series of instructions
executed consecutively)

Copyright © 2010, Elsevier Inc. All rights
Reserved

3

OpenMP for shared memory
multithreaded programming

• OpenMP is an implementation of
multithreading

• A primary thread (a series of instructions
executed consecutively)

• A number of sub-threads

Copyright © 2010, Elsevier Inc. All rights
Reserved

4

OpenMP for shared memory
multithreaded programming

• OpenMP is an implementation of
multithreading

• A primary thread (a series of instructions
executed consecutively)

• A number of sub-threads
– Forked from the primary thread
– The system divides a task among them

Copyright © 2010, Elsevier Inc. All rights
Reserved

5

OpenMP for shared memory
multithreaded programming

• OpenMP is an implementation of
multithreading

• A primary thread (a series of instructions
executed consecutively)

• A number of sub-threads
– Forked from the primary thread
– The system divides a task among them

• The threads then run concurrently

Copyright © 2010, Elsevier Inc. All rights
Reserved

6

Pragmas

• Special preprocessor instructions.

Copyright © 2010, Elsevier
Inc. All rights Reserved

#pragma

7

Pragmas

• Special preprocessor instructions.
• Typically added to a system to allow

behaviors that aren’t part of the basic
C/C++ specification.

Copyright © 2010, Elsevier
Inc. All rights Reserved

#pragma

8

Pragmas

• Special preprocessor instructions.
• Typically added to a system to allow

behaviors that aren’t part of the basic
C/C++ specification.

• Compilers that don’t support the pragmas
ignore them.

Copyright © 2010, Elsevier
Inc. All rights Reserved

#pragma

9

OpenMp pragmas

Copyright © 2010, Elsevier
Inc. All rights Reserved

• # pragma omp parallel

• # include omp.h

10

OpenMp pragmas

Copyright © 2010, Elsevier
Inc. All rights Reserved

• # pragma omp parallel

• # include omp.h

– Most basic parallel directive.

11

OpenMp pragmas

Copyright © 2010, Elsevier
Inc. All rights Reserved

• # pragma omp parallel

• # include omp.h

– Most basic parallel directive.
– The number of threads that run

the following structured block of code
is determined by the run-time system.

12

clause

• Text that modifies a directive.

Copyright © 2010, Elsevier
Inc. All rights Reserved

pragma omp parallel num_threads (thread_count)

13

clause

• Text that modifies a directive.
• The num_threads clause can be added to

a parallel directive.

Copyright © 2010, Elsevier
Inc. All rights Reserved

pragma omp parallel num_threads (thread_count)

14

clause

• Text that modifies a directive.
• The num_threads clause can be added to

a parallel directive.
• It allows the programmer to specify the

number of threads that should execute the
following block.

Copyright © 2010, Elsevier
Inc. All rights Reserved

pragma omp parallel num_threads (thread_count)

15

Some terminology

• In OpenMP, the collection of threads
executing the parallel block — the original
thread and the new threads — is called a
team, the original thread is called the
master, and the additional threads are
called worker.

Copyright © 2010, Elsevier
Inc. All rights Reserved 16

Parallel Code Template (OpenMP)

#include <omp.h>

main(…) {
… // let p be the user-specified #threads

omp_set_num_threads(p);

#pragma omp parallel
{
…. // openmp parallel region where p threads are
active and running concurrently
}

Copyright © 2010, Elsevier Inc. All rights
Reserved

17

Parallel Code Template (OpenMP)

#include <omp.h>

main(…) {
… // let p be the user-specified #threads

omp_set_num_threads(p);

#pragma omp parallel
{
…. // openmp parallel region where p threads are
active and running concurrently
}

Copyright © 2010, Elsevier Inc. All rights
Reserved

18

Parallel Code Template (OpenMP)

#include <omp.h>

main(…) {
… // let p be the user-specified #threads

omp_set_num_threads(p);

#pragma omp parallel
{
…. // openmp parallel region where p threads are
active and running concurrently
}

Copyright © 2010, Elsevier Inc. All rights
Reserved

19

Parallel Code Template (OpenMP)

#include <omp.h>

main(…) {
… // let p be the user-specified #threads

omp_set_num_threads(p);

#pragma omp parallel
{
…. // openmp parallel region where p threads are
active and running concurrently
}

Copyright © 2010, Elsevier Inc. All rights
Reserved

20

Parallel Code Template (OpenMP)

#include <omp.h>

main(…) {
… // let p be the user-specified #threads

omp_set_num_threads(p);

#pragma omp parallel
{
…. // openmp parallel region where p threads are
active and running concurrently
}

Copyright © 2010, Elsevier Inc. All rights
Reserved

21

Scope

• In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be
used.

Copyright © 2010, Elsevier
Inc. All rights Reserved 22

Scope

• In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be
used.

• In OpenMP, the scope of a variable refers
to the set of threads that can access the
variable in a parallel block.

Copyright © 2010, Elsevier
Inc. All rights Reserved 23

Scope in OpenMP
• A variable that can be accessed by all the

threads in the team has shared scope.

• A variable that can only be accessed by a
single thread has private scope.

• The default scope for variables
declared before a parallel block
is shared.

Copyright © 2010, Elsevier
Inc. All rights Reserved 24

#include <stdio.h>

int main()
{

printf("Hello world\n");
return 0;

}

Copyright © 2010, Elsevier Inc. All rights
Reserved

25

Serial version of “hello world”

How do we invoke omp in this case?

Compile it: g++ hello.cpp

#include <stdio.h>

int main()
{

printf("Hello world\n");
return 0;

}

Copyright © 2010, Elsevier Inc. All rights
Reserved

26

Serial version of “hello world”

How do we invoke omp in this case?

Compile it: g++ hello.cpp

After invoking omp

27

After invoking omp

28

After invoking omp

29

After invoking omp

30

After invoking omp

31

After invoking omp

32

After invoking omp

33

This is the
parallel region

After invoking omp

34
Compile it: gcc –fopenmp hello.c

This is the
parallel region

After invoking omp

35
Compile it: gcc –fopenmp hello.c
CMakeLists.txt: add Flag ‘-fopenmp’

This is the
parallel region

Add openmp flag in cmake

• Add openmp flag in your CMakeLists.txt
• set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")

Copyright © 2010, Elsevier Inc. All rights
Reserved

36

Copyright © 2010, Elsevier Inc. All rights
Reserved

37

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

38

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

39

Partition the data

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

40

Partition the data

Initialize the data

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

41

Partition the data

Initialize the data

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Set num of threads

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

42

Partition the data

Initialize the data

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Set num of threads

Use local sum instead of sum to avoid
resource competition on the sum

variable

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

43

Partition the data

Initialize the data

Parallelize the task

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Set num of threads

Use local sum instead of sum to avoid
resource competition on the sum

variable

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

44

Partition the data

Initialize the data

Parallelize the task

Aggregate the local result to the global sum

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Set num of threads

Use local sum instead of sum to avoid
resource competition on the sum

variable

Sum using OpenMP

Copyright © 2010, Elsevier Inc. All rights
Reserved

45

Partition the data

Initialize the data

Parallelize the task

Aggregate the local result to the global sum

sum is in the shared scope. All threads can access it.
Similarly, the data[] is also shared.

Set num of threads

parallel regionUse local sum instead of sum to avoid
resource competition on the sum

variable

Sum using OpenMP

