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OpenMP for shared memory 
multithreaded programming

• OpenMP is an implementation of 
multithreading

• A primary thread (a series of instructions 
executed consecutively)

• A number of sub-threads
– Forked from the primary thread
– The system divides a task among them

• The threads then run concurrently
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Pragmas

• Special preprocessor instructions.
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Pragmas

• Special preprocessor instructions.
• Typically added to a system to allow 

behaviors that aren’t part of the basic 
C/C++ specification.
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Pragmas

• Special preprocessor instructions.
• Typically added to a system to allow 

behaviors that aren’t part of the basic 
C/C++ specification.

• Compilers that don’t support the pragmas 
ignore them.
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OpenMp pragmas
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OpenMp pragmas
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• # pragma omp parallel

• # include omp.h

– Most basic parallel directive.
– The number of threads that run 

the following structured block of code 
is determined by the run-time system.
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clause

• Text that modifies a directive. 
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clause

• Text that modifies a directive. 
• The num_threads clause can be added to 

a parallel directive. 
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clause

• Text that modifies a directive. 
• The num_threads clause can be added to 

a parallel directive. 
• It allows the programmer to specify the 

number of threads that should execute the 
following block.
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Some terminology

• In OpenMP, the collection of threads 
executing the parallel block — the original 
thread and the new threads — is called a 
team, the original thread is called the 
master, and the additional threads are 
called worker.
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Parallel Code Template (OpenMP)

#include <omp.h>

main(…) {
… // let p be the user-specified #threads

omp_set_num_threads(p);

#pragma omp parallel
{
…. // openmp parallel region where p threads are 
active and running concurrently
}
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Scope

• In serial programming, the scope of a 
variable consists of those parts of a 
program in which the variable can be 
used.
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Scope

• In serial programming, the scope of a 
variable consists of those parts of a 
program in which the variable can be 
used.

• In OpenMP, the scope of a variable refers 
to the set of threads that can access the 
variable in a parallel block.
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Scope in OpenMP
• A variable that can be accessed by all the 

threads in the team has shared scope.

• A variable that can only be accessed by a 
single thread has private scope.

• The default scope for variables 
declared before a parallel block 
is shared.
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#include <stdio.h>

int main()
{

printf("Hello world\n");
return 0;

}
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How do we invoke omp in this case?

Compile it: g++ hello.cpp
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After invoking omp
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After invoking omp
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This is the 
parallel region



After invoking omp
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After invoking omp
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Compile it: gcc –fopenmp hello.c
CMakeLists.txt: add Flag ‘-fopenmp’

This is the 
parallel region



Add openmp flag in cmake

• Add openmp flag in your CMakeLists.txt
• set(CMAKE_CXX_FLAGS  "${CMAKE_CXX_FLAGS} -fopenmp")
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sum is in the shared scope. All threads can access it. 
Similarly, the data[] is also shared.

Sum using OpenMP 
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Partition the data

Initialize the data

Parallelize the task

Aggregate the local result to the global sum

sum is in the shared scope. All threads can access it. 
Similarly, the data[] is also shared.

Set num of threads

parallel regionUse local sum instead of sum to avoid 
resource competition on the sum 

variable

Sum using OpenMP 


