
Introduction to Parallel
Programming

Center for Institutional Research
Computing

Slides for the book "An introduction to Parallel
Programming", by Peter Pacheco (available from the
publisher
website): http://booksite.elsevier.com/9780123
742605/

Copyright © 2010, Elsevier Inc. All rights
Reserved

1

http://booksite.elsevier.com/9780123742605/

Serial hardware and software

Copyright © 2010, Elsevier
Inc. All rights Reserved

input

output

programs

Computer runs one
program at a time.

2

Why we need to write parallel
programs

• Running multiple instances of a serial
program often is not very useful.
– Have the same program run 100 times
– Have 100 computers run the same program 1

time

Copyright © 2010, Elsevier
Inc. All rights Reserved 3

Why we need to write parallel
programs

• Running multiple instances of a serial
program often is not very useful.
– Have the same program run 100 times
– Have 100 computers run the same program 1

time
• What you really want is to make the overall

process finish faster.

Copyright © 2010, Elsevier
Inc. All rights Reserved 4

How do we write parallel programs?

• Partition the workload and let CPU cores
work in parallel
– Task parallelism

• Partition various tasks used in solving the problem
among the cores.

Copyright © 2010, Elsevier
Inc. All rights Reserved 5

How do we write parallel programs?

• Partition the workload and let CPU cores
work in parallel
– Task parallelism

• Partition various tasks used in solving the problem
among the cores.

– Data parallelism
• Partition the data used in solving the problem

among the cores.

Copyright © 2010, Elsevier
Inc. All rights Reserved 6

How do we write parallel programs?

• Partition the workload and let CPU cores
work in parallel
– Task parallelism

• Partition various tasks used in solving the problem
among the cores.

– Data parallelism
• Partition the data used in solving the problem

among the cores.
• Each core carries out similar operations on it’s part

of the data.
Copyright © 2010, Elsevier
Inc. All rights Reserved 7

Professor P

Copyright © 2010, Elsevier
Inc. All rights Reserved

Grade an exam:
300 exam papers
15 questions each

8

Professor P’s grading assistants

Copyright © 2010, Elsevier
Inc. All rights Reserved

TA#1
TA#2 TA#3

9

Division of work –
data parallelism

Copyright © 2010, Elsevier
Inc. All rights Reserved

TA#1

TA#2

TA#3

100 exams

100 exams

100 exams

10

Division of work –
task parallelism

Copyright © 2010, Elsevier
Inc. All rights Reserved

TA#1

TA#2

TA#3

Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

Questions 1 - 7

Questions 8 - 11

Questions 12 - 15

Partitioning strategy:
- either by number

- Or by workload

or

or

or

11

Coordination
• Cores usually need to coordinate their work.
• Communication – one or more cores send

their current partial sums to another core.
– E.g., ML algorithms, PageRank

• Load balancing – share the work evenly
among the cores so that one is not heavily
loaded.

• Synchronization – because each core works
at its own pace, make sure cores do not get
too far ahead of the rest.

Copyright © 2010, Elsevier
Inc. All rights Reserved 12

Memory

• Two major classes of parallel programming
models:
– Shared Memory
– Distributed Memory

13

Shared Memory Architecture

CPU core #1

Memory
(Shared address

space)

disk

Memory bus

Compute node

I/O bus

Cache ($)

CPU core

Cache ($)
…

CPU core

Cache ($)

ThreadsThreads Threads

All threads can see a single
shared address space.
Therefore, they can see each
other’s data.

Each compute node has 1-2
CPUs each with 10-14 cores

14

Multi-Threading (for shared
memory architectures)

• Threads are contained within processes
– One process => multiple threads

• All threads of a process share the same
address space (in memory).

• Threads have the capability to run
concurrently (executing different
instructions and accessing different
pieces of data at the same time)

• But if the resource is occupied by another
thread, they form a queue and wait.
– For maximum throughput, it is ideal to

map each thread to a unique/distinct core

Copyright © 2010, Elsevier
Inc. All rights Reserved 15

CPU cores

Cache ($)

Threads

Memory
(Shared
address
space)

A process and two threads

Copyright © 2010, Elsevier
Inc. All rights Reserved

the “master” thread

starting a thread
Is called forking

terminating a thread
Is called joining

16

Distributed Memory Architecture

Local Memory

Compute node 1

Local Memory

Compute node 2

Local Memory

Compute node m

………

Network Interconnect

Processes running
on cores

Processes running
on cores

Processes running
on cores

Processes cannot see each other’s memory address space.
They have to send inter-process messages (using MPI).

17

Distributed Memory System
• Clusters (most popular)

– A collection of commodity systems.
– Connected by a commodity interconnection

network.
• Nodes of a cluster are individual

computers joined by a communication
network.

18

How to change your program to a
parallel program?

Foster’s methodology
1. Partitioning: divide the computation to be

performed and the data operated on by
the computation into small tasks.

The focus here should be on identifying
tasks that can be executed in parallel.

Copyright © 2010, Elsevier
Inc. All rights Reserved 19

Foster’s methodology

2. Communication: determine what
communication needs to be carried out
among the tasks identified in the previous
step.

Copyright © 2010, Elsevier
Inc. All rights Reserved 20

Foster’s methodology

3. Aggregation: combine tasks and
communications identified in the first step
into larger tasks.

For example, if task A must be executed
before task B can be executed, it may
make sense to aggregate them into a
single composite task.

Copyright © 2010, Elsevier
Inc. All rights Reserved 21

Foster’s methodology

4. Mapping: assign the composite tasks
identified in the previous step to
processes/threads.

This should be done so that
communication is minimized, and each
process/thread gets roughly the same
amount of work.

Copyright © 2010, Elsevier
Inc. All rights Reserved 22

