
CPTS 223 Advanced Data
Structure C/C++

Hashing

1

Overview
Hashing

WSU

• Hash Table Data Structure : Purpose
• To support insertion, deletion and search in average-case constant time

• Assumption: Order of elements irrelevant

• → data structure NOT useful for if you want to maintain and retrieve an order of
the elements

• Hash function
• Hash[“string key”] → integer value

• Hash table ADT
• Implementations, analysis, applications

• Collision in hash tables
2

Average-case O(1)

Hash table
Hashing

WSU

3

“John” h(“John”)

key h: hash function

Output of hash
function: hash index

key value

Ta
bl

e
si

ze

Implemented
as a vector

Hash table
Hashing

WSU

4

• Hash table is an array of fixed size
TableSize

• Array elements indexed by a key, which is
mapped to an array index (0…TableSize-1)

• Mapping (hash function) h from key to
index
• e.g., h(“john”) = 3

key value

Ta
bl

e
si

ze

Output of hash
function: hash index

Hash table operations
Hashing

WSU

• Insert
• T [h(“john”)] = <“john”,25000>

• Delete
• T [h(“john”)] = NULL

• Search
• T [h(“john”)] returns the element

hashed for “john”

5

hash
key

hash
function

Data
record

What happens if
h(“john”) == h(”joe”)?

collision

Factors of hash table design
Hashing

WSU

• Hash function

• Table size
• Usually fixed at the start

• Collision handling scheme

6

Hash function
Hashing

WSU

• A hash function is one which maps an element’s key into a valid hash
table index
• h(key) → hash table index

• Note that this is different from saying:
• h(string) → int

• Because the key can be of any type

• e.g., “h(int) => int” is also a hash function

7

Hash function properties
Hashing

WSU

• A hash function maps key to integer
• Constraint: Integer should be between:

 [0, TableSize-1]

• A hash function can result in a many-to-one mapping (causing
collision)
• Collision occurs when hash function maps two or more keys to same array index

• Collisions cannot be avoided

• But its chances can be reduced using a “good” hash function

8

h(key) → hash able index

Hash function properties
Hashing

WSU

• A “good” hash function should have the following properties:

• Reduced chance of collision

• Different keys should ideally map to different indices

• Distribute keys uniformly over table

• Should be fast to compute

9

Effective table size
Hashing

WSU

• Simple hash function (assume integer keys)
• h(Key) = Key mod TableSize

• For random keys, h() distributes keys evenly over table
• What if TableSize = 100 and keys are ALL multiples of 10?

• Better if TableSize is a prime number

10

Hash function for string keys
Hashing

WSU

• Approach 1: A very simple function to map strings to integers

• Add up character ASCII values (0-255) to produce integer keys
• e.g., “abcd” = 97+98+99+100 = 394

• → h(“abcd”) = 394 % TableSize

• Potential problems:

• Anagrams will map to the same index
• h(“abcd”) == h(“dbac”)

• Small strings may not use all of table
• Strlen(S) * 255 << TableSize

• Time proportional to length of the string
11

Hash function for string keys
Hashing

WSU

• Approach 2: treat first 3 characters of string as base-27 integer (26
letters plus space)

• Key = S[0] + (27 * S[1]) + (272 * S[2])

• Potential problems:
• Assumes first 3 characters randomly distributed?

• Not true of English

• Apple

• Apply

• Appointment

• Apricot

12

collision

Better than approach 1
because … ?

e.g., anagrams will not
map to the same index
h(“abcd”) ≠ h(“dbac”)

Hash function for string keys
Hashing

WSU

• Approach 3: use all N characters of
string as an N-digit base-K number

• Choose K to be prime number larger
than number of different digits
(characters)
• i.e., K = 29, 31, 37

• If L = length of string S, then

• h(S) = [σ𝑖=0
𝐿−1 𝑆 𝐿 − 1 − 𝑖 ∗ 37𝑖] mod

TableSize

• Use Horner’s rule to compute h(S)

• Limit L for long strings

13

Polynomial function of 37
Degree = L-1
Problems: potential overflow larger runtime

Techniques for collisions
Hashing

WSU

• Separate chaining

• Probing

• Double hashing

14

With linked lists

Open addressing:
without linked lists

Techniques for collisions
Hashing

WSU

• What happens when h(k1) = h(k2)?
• → collision

• Collision resolution strategies
• Separate chaining

• Store colliding keys in a linked list at the same hash table index

• Open addressing

• Store colliding keys elsewhere in the table

• Rehashing: when the hash table is too full
• If too full

• hash table operations take too long

• insertions might fail for open addressing
15

Separate chaining
Hashing

WSU

• Strategy: maintains a linked list at every
hash index for collided elements

• Hash table T is a vector of linked lists
• Insert element at the head (as shown here) or

at the tail

• Key k is stored in list at T[h(k)]

• e.g., TableSize = 10
• h(k) = k mod 10

• Insert first 10 perfect squares

16

Insertion sequence: { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 }

Separate chaining: declaration
Hashing

WSU

17

Vector of linked lists (the main hash table)

Current #elements in the hash table
size_t: unsigned integral type that
represents the size of an object

Separate chaining: hash function
Hashing

WSU

18

Private myHash function

Generic hash function

Separate chaining: insert
Hashing

WSU

19

Rehash: double the size of the
hash table if it gets crowded

Check if already present:
If present: do nothing

Add data at end

Hash function outputs
the index of table

Find the target
linked list

find returns:
the target iterator (if match) or
last iterator (if not match)

Separate chaining
Hashing

WSU

20

Hash function outputs
the index of table

Check if already present:
If present: do nothing

Separate chaining: remove
Hashing

WSU

21

Each of these operations takes time
linear in the length of the list at the
hashed index location

Not found, no removal

Separate chaining: analysis
Hashing

WSU

22

• Load factor λ of a hash table T is defined as follows:
• N = number of elements in T

• Current size

• M = size of T
• TableSize

• λ = N/M
• load factor

• i.e., λ is the average length of a chain

• Search time: O(1 + λ)

• Ideally, want λ ≤ 1

Separate chaining: disadvantage
Hashing

WSU

23

• Linked lists could get long
• Especially when N approaches M

• Longer linked lists could negatively impact performance

• More memory because of pointers

• Absolute worst-case (even if N << M):
• All N elements in one linked list!

• Typically the result of a bad hash function

Open addressing
Hashing

WSU

• When a collision occurs, look elsewhere in the table for an empty slot

• Advantages over chaining
• No need for list structures

• No need to allocate/deallocate memory during insertion/deletion (slow)

• Disadvantages
• Slower insertion – May need several attempts to find an empty slot

• Table needs to be bigger (than chaining-based table) to achieve average-case
constant-time performance

• Load factor λ ≈ 0.5

24

Load factor = N/M N: # of elements in hash table
M: size of T (TableSize)

Open addressing
Hashing

WSU

• A “probe sequence” is a sequence of slots in hash table while
searching for an element x
• h_0(x), h_1(x), h_2(x), …

• Needs to visit each slot exactly once

• Needs to be repeatable (so we can find/delete what we have inserted already)

• Hash function
• h_i(x) = (h(x) + f(i)) mod TableSize

• f(0) = 0 → position for the 0-th probe

• f(i) is “the distance to be traveled relative to the 0-th probe position, during the
i-th probe”.

25

f(i) can be linear, quadratic, etc.

Open addressing: linear probing
Hashing

WSU

26

occupied

occupied

occupied

unoccupied

0th probe

1st probe

2nd probe

3rd probe

• f(i): a linear function of i

• e.g., f(i) = i

• h_i(x) = (h(x) + f(i)) mod TableSize

 = (h(x) + i) mod TableSize

• Probe sequence: +0, +1, +2, …

• Continue until an empty slot is found

• #failed probes is a measure of performance

 (smaller → better)

insesrt x
here

Open addressing: linear probing
Hashing

WSU

• f(i): a linear function of i, e.g., f(i)=i
• hi(x) := (h(x) + i) mod TableSize

• Probe sequence: +0, +1, +2, +3, +4, …

• Example: h(x) = x mod TableSize
• h0(89) = (h(89)+f(0)) mod 10 = 9

• h0(18) = (h(18)+f(0)) mod 10 = 8

• h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

• h1(49) = (h(49)+f(1)) mod 10

 = (h(49)+ 1) mod 10 = 0

27

Hash table at index 9 has been
occupied by 89 (the first insert)

Open addressing: linear probing
Hashing

WSU

28

Insert sequence:
89, 18, 49, 58, 69

#unsuccessful probes: 0 0 1 3 3

Totally 7

Linear probing: issues
Hashing

WSU

• Probe sequences can get longer with time

• Primary clustering (blocks of occupied cells)
• If probe occurs, keys tend to cluster in one part of table

• Keys that hash into cluster will be added to the end of the cluster (making it
even bigger)

• Side effect: Other keys could also get affected if mapping to a crowded
neighborhood

29

Linear probing: analysis
Hashing

WSU

• Expected number of probes for
insertion or unsuccessful search

• Expected number of probes for
successful search

30

• Example (λ = 0.5)
• Insert / unsuccessful search

 2.5 probes

• Successful search

 1.5 probes

• Example (λ = 0.9)
• Insert / unsuccessful search

 50.5 probes

• Successful search

 5.5 probes

Proof by Don Knuth in 1963, notes at https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf

Target element is not
present in hash table

Target element is
present in hash table

Too many probes
Can we avoid?

https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf

Random probing
Hashing

WSU

• Instead of using f(i)=i

• h_i(x) = (h(x) + probe_positions[i]) mod TableSize
• probe_positions is an array that contains a list of random numbers

• The array should be generated beforehand and used in both search
and insert

• Avoids primary clustering

31

Why?

Random probing
Hashing

WSU

• Instead of using f(i)

• h_i(x) = (h(x) + probe_positions[i]) mod TableSize
• probe_positions is an array that contains a list of random numbers

• The array should be generated beforehand and used in both search
and insert

• Avoids primary clustering

32

Why?

Recall: probe sequence needs to be
repeatable (so we can find/delete
what we have inserted already)

Random probing
Hashing

WSU

• Random probing does not suffer from clustering

• Expected number of probes for insertion or unsuccessful search:

• Example
• λ = 0.5 → 1.4 probes

• λ = 0.9 → 2.6 probes

33

Random probing
Hashing

WSU

34

Linear probing
 Random probing

Load factor λ

probes

Lower better

U - unsuccessful search
S - successful search
I - insert

Quadratic probing
Hashing

WSU

35

occupied

occupied

occupied

unoccupied

0th probe

1st probe

2nd probe

3rd probe

• Avoids primary clustering

• f(i) is quadratic in i
• e.g., f(i) = i^2

• h_i(x) = ((h(x) +i^2) mode TableSize

• Probe sequence:
• +0, +1, +4, +9, +16, …

• Continue until an empty slot is found

• #failed probes is a measure of performance

Why?

Quadratic probing
Hashing

WSU

• Avoids primary clustering

• f(i) is quadratic in i, e.g., f(i) = i
• h_i(x) = (h(x) + i^2) mod TableSize

• Probe sequence: +0, +1, +4, +9, +16, …

• Example: insert 89, 18, 49, 58

36

h0(89) = (h(89)+f(0)) mod 10 = 9
h0(18) = (h(18)+f(0)) mod 10 = 8
h0(49) = (h(49)+f(0)) mod 10 = 9 (X)
h1(49) = (h(49)+f(1)) mod 10 = 0

h0(58) = (h(58)+f(0)) mod 10 = 8 (X)
h1(58) = (h(58)+f(1)) mod 10 = 9 (X)
h2(58) = (h(58)+f(2)) mod 10 = 2

9 has been
occupied

9 has been
occupied

8 has been
occupied

Quadratic probing
Hashing

WSU

37

#unsuccessful probes: 0 0 1 2 2

Totally 5

Quadratic probing: analysis
Hashing

WSU

• Theorem 5.1
• New element can always be inserted into a table that is at least half empty and

TableSize is prime

• Otherwise, may never find an empty slot, even is one exists

• Ensure table never gets half full
• If close, then expand it

• May cause “secondary clustering”:
• elements that hash to the same position will probe the same alternative cells

• Take long time to find empty slots

38

rehash

Quadratic probing: delete
Hashing

WSU

• Deletion
• Emptying slots can break probe sequence and could

cause find stop prematurely

• Lazy deletion

• Differentiate between empty and deleted slot

• When finding, skip and continue beyond deleted slots

• If you hit a non-deleted empty slot, then stop find
procedure returning “not found”

• When does it really (physically) delete the data?
• Delete upon insert

• Compaction at some time

39

occupied

unoccupied

occupied

unoccupied

0th probe

1st probe

2nd probe?

3rd probe?

Quadratic probing
Hashing

WSU

40Figure 5.14

For lazy deletion

Quadratic probing
Hashing

WSU

41

Initialize by
EMPTY

Quadratic probing
Hashing

WSU

42

Clear hash table:
set to EMPTY

Quadratic probing
Hashing

WSU

43

Quadratic probing
position

Quadratic probing
Hashing

WSU

44

Skip DELETED

offset: a sequence of
odd numbers: 1, 3, 5, …

currentPos: sum
of odd numbers

Sum of i odd
numbers == i^2

Quadratic probing
Hashing

WSU

45

Labeled as DELETED

Find quadratic
probing position

Find quadratic
probing position

Labeled as ACTIVE

Double hashing
Hashing

WSU

• Use a second hash function

• Good choices for h_2(x) ?
• Should never evaluate to 0

• e.g., h_2(x) = R – (x mod R)

• R is prime number less than TableSize

• Previous example with R=7
• h_2(x) = 7 – (x mod 7)

• f(i) = i * h_2(x)

• h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

• h1(49) = (h(49)+1*(7 – 49 mod 7)) mod 10 = 6

46

h_i(x) = (h(x) + f(i))

Double hashing: example
Hashing

WSU

47

#unsuccessful probes: 0 0 1 1 2

Totally 4

collision

collision

collision 1

collision 2

Double hashing: analysis
Hashing

WSU

• TableSize must be prime

• Empirical tests show double hashing close to random probing

• Extra hash function takes extra time to compute

48

Probing techniques: review
Hashing

WSU

49

0th probe

1st probe

2nd probe

3rd probe

0th probe

1st probe

2nd probe

3rd probe

Populate
x here

0th probe

1st probe

2nd probe

3rd probe

linear probing quadratic probing double hashing

Rehashing
Hashing

WSU

• Increases the size of the hash table when load factor becomes “too
high” (defined by a cutoff)
• Anticipating that prob(collisions) would become higher

• Typically expand the table to twice its size (but still prime)

• Need to reinsert all existing elements into new hash table

50

Rehashing: example
Hashing

WSU

51

h(x) = x mod 7
λ = 0.57

Insert 23

λ = 0.71

rehashing

h(x) = x mod 17
λ = 0.29

Rehashing: analysis
Hashing

WSU

• Rehashing takes time to do N insertions
• O(N)

• Therefore, should do it infrequently

• Specifically
• Must have been N/2 insertions since last rehash

• Amortizing the O(N) cost over the N/2 prior insertions yields only constant
additional time per insertion

52

Rehashing: implementation
Hashing

WSU

• When to rehash?
• When load factor reaches some threshold (e.g,. λ ≥0.5), OR

• When an insertion fails

• Applies across collision handling schemes

53

Rehashing for separate chaining
Hashing

WSU

54

Double the size

Empty each list

Each list

Each element

Rehashing for quadratic probing
Hashing

WSU

55

Double the size

Empty each element

Each element

Hash tables in C++ STL
Hashing

WSU

• Some implementations of STL have hash tables (e.g., SGI STL)

• hash_set

• hash_map

56

STL unordered_map
Hashing

WSU

• unordered_map: A better option for hash table

• Supported in C++ 11 and later

• Supports a standard interface for common hash table operations

• Operations on average are O(1)

57

Problems with large tables
Hashing

WSU

• What if hash table is too large to store in main memory?

• Solution: Store hash table on disk
• Minimize disk accesses

• But…
• Collisions require disk accesses

• Rehashing requires a lot of disk accesses

58

Solution:
extendible hashing

Hash table applications
Hashing

WSU

• Symbol table in compilers

• Accessing tree or graph nodes by name
• e.g., city names in Google maps

• Maintaining a transposition table in games
• Remember previous game situations and the move taken (avoid re-

computation)

• Dictionary lookups
• Spelling checkers

• Natural language understanding (word sense)

• Heavily used in text processing languages
• e.g., Python dictionary

59

Hashing: summary
Hashing

WSU

• Hash tables support fast insert and search
• O(1) insert, search, delete avg performance

• Deletion possible, but degrades performance

• Not suited if ordering of elements is important

• Many applications

60

Hashing: checklist to remember
Hashing

WSU

• Table size prime

• Table size much larger than number of inputs (to maintain λ closer to
0 or < 0.5)

• Tradeoffs between chaining vs. probing

• Collision chances decrease in this order:

 linear probing > quadratic probing > {random probing, double hashing}

• Rehashing required to resize hash table at a time when λ exceeds a
threshold (usually 0.5)

• Good for searching. Not good if there is some order implied by data

61

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Hash table
	Slide 4: Hash table
	Slide 5: Hash table operations
	Slide 6: Factors of hash table design
	Slide 7: Hash function
	Slide 8: Hash function properties
	Slide 9: Hash function properties
	Slide 10: Effective table size
	Slide 11: Hash function for string keys
	Slide 12: Hash function for string keys
	Slide 13: Hash function for string keys
	Slide 14: Techniques for collisions
	Slide 15: Techniques for collisions
	Slide 16: Separate chaining
	Slide 17: Separate chaining: declaration
	Slide 18: Separate chaining: hash function
	Slide 19: Separate chaining: insert
	Slide 20: Separate chaining
	Slide 21: Separate chaining: remove
	Slide 22: Separate chaining: analysis
	Slide 23: Separate chaining: disadvantage
	Slide 24: Open addressing
	Slide 25: Open addressing
	Slide 26: Open addressing: linear probing
	Slide 27: Open addressing: linear probing
	Slide 28: Open addressing: linear probing
	Slide 29: Linear probing: issues
	Slide 30: Linear probing: analysis
	Slide 31: Random probing
	Slide 32: Random probing
	Slide 33: Random probing
	Slide 34: Random probing
	Slide 35: Quadratic probing
	Slide 36: Quadratic probing
	Slide 37: Quadratic probing
	Slide 38: Quadratic probing: analysis
	Slide 39: Quadratic probing: delete
	Slide 40: Quadratic probing
	Slide 41: Quadratic probing
	Slide 42: Quadratic probing
	Slide 43: Quadratic probing
	Slide 44: Quadratic probing
	Slide 45: Quadratic probing
	Slide 46: Double hashing
	Slide 47: Double hashing: example
	Slide 48: Double hashing: analysis
	Slide 49: Probing techniques: review
	Slide 50: Rehashing
	Slide 51: Rehashing: example
	Slide 52: Rehashing: analysis
	Slide 53: Rehashing: implementation
	Slide 54: Rehashing for separate chaining
	Slide 55: Rehashing for quadratic probing
	Slide 56: Hash tables in C++ STL
	Slide 57: STL unordered_map
	Slide 58: Problems with large tables
	Slide 59: Hash table applications
	Slide 60: Hashing: summary
	Slide 61: Hashing: checklist to remember

