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Overview
Hashing

WSU

• Hash Table Data Structure : Purpose
• To support insertion, deletion and search in average-case constant time

• Assumption: Order of elements irrelevant

• → data structure NOT useful for if you want to maintain and retrieve an order of 
the  elements

• Hash function
• Hash[ “string key”] → integer value

• Hash table ADT
• Implementations, analysis, applications

• Collision in hash tables
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Average-case O(1)
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“John” h(“John”)

key h: hash function

Output of hash 
function: hash index

key value
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• Hash table is an array of fixed size 
TableSize

• Array elements indexed by a key, which is 
mapped to an array index (0…TableSize-1)

• Mapping (hash function) h from key to 
index
• e.g., h(“john”) = 3

key value

Ta
bl

e 
si

ze

Output of hash 
function: hash index



Hash table operations
Hashing
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• Insert
• T [h(“john”)] = <“john”,25000>

• Delete
• T [h(“john”)] = NULL

• Search
• T [h(“john”)] returns the  element 

hashed for “john”
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hash 
key

hash 
function

Data 
record

What happens if 
h(“john”) == h(”joe”)?

collision



Factors of hash table design
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• Hash function

• Table size
• Usually fixed at the start

• Collision handling scheme
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Hash function
Hashing

WSU

• A hash function is one which maps an element’s key into a valid hash 
table index
• h(key) → hash table index

• Note that this is different from saying:  
• h(string) → int

• Because the key can be of any type

• e.g., “h(int) => int” is also a hash function
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Hash function properties
Hashing

WSU

• A hash function maps key to integer
• Constraint: Integer should be between:

              [0, TableSize-1]

• A hash function can result in a many-to-one mapping (causing 
collision)
• Collision occurs when hash function maps two or more keys to same array index

• Collisions cannot be avoided 

• But its chances can be reduced using a “good” hash function
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h(key) → hash able index



Hash function properties
Hashing

WSU

• A “good” hash function should have the following properties:

• Reduced chance of collision

• Different keys should ideally map to different indices

• Distribute keys uniformly over table

• Should be fast to compute
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Effective table size
Hashing
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• Simple hash function (assume integer keys)
• h(Key) = Key mod TableSize

• For random keys, h() distributes keys evenly over table
• What if TableSize = 100 and keys are ALL multiples of 10?

• Better if TableSize is a prime number
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Hash function for string keys 
Hashing
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• Approach 1: A very simple function to map strings to integers

• Add up character ASCII values (0-255) to produce  integer keys
• e.g., “abcd” = 97+98+99+100 = 394

• → h(“abcd”) = 394 % TableSize

• Potential problems:

• Anagrams will map to the same index
• h(“abcd”) == h(“dbac”)

• Small strings may not use all of table
• Strlen(S) * 255 << TableSize

• Time proportional to length of the string
11



Hash function for string keys 
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• Approach 2: treat first 3 characters of string as base-27 integer (26  
letters plus space)

• Key = S[0] + (27 * S[1]) + (272 * S[2])

• Potential problems:
• Assumes first 3 characters randomly distributed?

• Not true of English

• Apple  

• Apply

• Appointment

• Apricot
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collision

Better than approach 1 
because … ?

e.g., anagrams will not 
map to the same index
h(“abcd”) ≠ h(“dbac”)



Hash function for string keys 
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• Approach 3: use all N characters of 
string as an N-digit base-K number

• Choose K to be prime number  larger 
than number of different digits 
(characters)
• i.e., K = 29, 31, 37

• If L = length of string S, then

• h(S) = [σ𝑖=0
𝐿−1 𝑆 𝐿 − 1 − 𝑖 ∗  37𝑖] mod 

TableSize

• Use Horner’s rule to compute h(S)

• Limit L for long strings
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Polynomial function of 37
Degree = L-1
Problems: potential overflow larger runtime



Techniques for collisions
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• Separate chaining

• Probing 

• Double hashing  
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With linked lists

Open addressing: 
without linked lists



Techniques for collisions
Hashing
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• What happens when h(k1) = h(k2)?
• → collision 

• Collision resolution strategies
• Separate chaining

• Store colliding keys in a linked list at the same hash table index

• Open addressing

• Store colliding keys elsewhere in the table

• Rehashing: when the hash table is too full
• If too full

• hash table operations take too long

• insertions might fail for open addressing
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Separate chaining
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• Strategy: maintains a linked list at every 
hash index for collided elements

• Hash table T is a vector of  linked lists
• Insert element at the head (as shown here) or 

at the tail

• Key k is stored in list at T[h(k)]

• e.g., TableSize = 10
• h(k) = k mod 10

• Insert first 10 perfect squares
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Insertion sequence: { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 } 



Separate chaining: declaration
Hashing

WSU

17

Vector of linked lists (the main hash table)

Current #elements in the hash table
size_t: unsigned integral type that 
represents the size of an object



Separate chaining: hash function
Hashing
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Private myHash function

Generic hash function



Separate chaining: insert
Hashing

WSU

19

Rehash: double the size of the 
hash table if it gets crowded

Check if already present:
If present: do nothing

Add data at end

Hash function outputs 
the index of table

Find the target 
linked list

find returns: 
the target iterator (if match) or
last iterator (if not match)



Separate chaining
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Hash function outputs 
the index of table

Check if already present:
If present: do nothing



Separate chaining: remove
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Each of these operations takes time  
linear in the length of the list at the 
hashed index location

Not found, no removal



Separate chaining: analysis
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• Load factor λ of a hash table T is defined as follows:
• N = number of elements in T

• Current size

• M = size of T
• TableSize

• λ = N/M
• load factor

• i.e., λ is the average length of a chain

• Search time: O(1 + λ)

• Ideally, want λ ≤ 1



Separate chaining: disadvantage
Hashing
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• Linked lists could get long
• Especially when N approaches M

• Longer linked lists could negatively impact performance

• More memory because of pointers  

• Absolute worst-case (even if N << M):
• All N elements in one linked list!

• Typically the result of a bad hash function



Open addressing
Hashing

WSU

• When a collision occurs, look elsewhere in the table for an empty slot

• Advantages over chaining
• No need for list structures

• No need to allocate/deallocate memory during insertion/deletion (slow)

• Disadvantages
• Slower insertion – May need several attempts to find an empty slot

• Table needs to be bigger (than chaining-based table) to achieve average-case 
constant-time performance

• Load factor λ ≈ 0.5
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Load factor = N/M N: # of elements in hash table
M: size of T (TableSize)



Open addressing
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• A “probe sequence” is a sequence of slots in hash table while  
searching for an element x
• h_0(x), h_1(x), h_2(x), …

• Needs to visit each slot exactly once

• Needs to be repeatable (so we can find/delete what we have inserted already)

• Hash function
• h_i(x) = (h(x) + f(i)) mod TableSize

• f(0) = 0 → position for the 0-th probe

• f(i) is “the distance to be traveled relative to the 0-th probe position, during the 
i-th probe”.
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f(i) can be linear, quadratic, etc.



Open addressing: linear probing
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occupied

occupied

occupied

unoccupied

0th probe

1st probe

2nd probe

3rd probe

• f(i): a linear function of i

• e.g., f(i) = i

• h_i(x) = (h(x) + f(i)) mod TableSize

                   = (h(x) + i ) mod TableSize

• Probe sequence: +0, +1, +2, …

• Continue until an empty slot is found

• #failed probes is a measure of performance

      (smaller → better)

insesrt x 
here



Open addressing: linear probing
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• f(i): a linear function of i, e.g., f(i)=i
• hi(x) := (h(x) + i) mod TableSize

• Probe sequence: +0, +1, +2, +3, +4, …

• Example: h(x) = x mod TableSize
• h0(89) = (h(89)+f(0)) mod 10 = 9

• h0(18) = (h(18)+f(0)) mod 10 = 8

• h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

• h1(49) = (h(49)+f(1)) mod 10

                     = (h(49)+ 1 ) mod 10 = 0
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Hash table at index 9 has been 
occupied by 89 (the first insert)



Open addressing: linear probing
Hashing
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Insert sequence: 
89, 18, 49, 58, 69

#unsuccessful probes:                              0                      0                        1                       3 3      

Totally 7



Linear probing: issues
Hashing
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• Probe sequences can get longer with time

• Primary clustering (blocks of occupied cells)
• If probe occurs, keys tend to cluster in one part of table

• Keys that hash into cluster will be added to the end of the cluster (making it 
even bigger)

• Side effect: Other keys could also get affected if mapping to a crowded  
neighborhood
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Linear probing: analysis
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• Expected number of probes for 
insertion or unsuccessful search

• Expected number of  probes for 
successful search
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• Example (λ = 0.5)
• Insert / unsuccessful search

            2.5 probes

• Successful search

            1.5 probes

• Example (λ = 0.9)
• Insert / unsuccessful  search

            50.5 probes

• Successful search

            5.5 probes

Proof by Don Knuth in 1963, notes at https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf 

Target element is not 
present in hash table

Target element is 
present in hash table

Too many probes
Can we avoid?

https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf


Random probing
Hashing
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• Instead of using f(i)=i

• h_i(x) = (h(x) + probe_positions[i]) mod TableSize
• probe_positions is an array that contains a list of random numbers

• The array should be generated beforehand and used in both search 
and insert

• Avoids primary clustering

31

Why?



Random probing
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• Instead of using f(i)

• h_i(x) = (h(x) + probe_positions[i]) mod TableSize
• probe_positions is an array that contains a list of random numbers

• The array should be generated beforehand and used in both search 
and insert

• Avoids primary clustering
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Why?

Recall: probe sequence needs to be 
repeatable (so we can find/delete 
what we have inserted already)



Random probing
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• Random probing does not suffer from clustering

• Expected number of probes for insertion or unsuccessful search:

• Example
• λ = 0.5 → 1.4 probes

• λ = 0.9 → 2.6 probes
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Random probing
Hashing

WSU
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Linear probing
                Random probing

Load factor λ

# probes

Lower better

U - unsuccessful search  
S - successful search
I - insert



Quadratic probing
Hashing
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occupied

occupied

occupied

unoccupied

0th probe

1st probe

2nd probe

3rd probe

• Avoids primary clustering

• f(i) is quadratic in i
• e.g., f(i) = i^2

• h_i(x) = ((h(x) +i^2) mode TableSize

• Probe sequence:
• +0, +1, +4, +9, +16, …

• Continue until an empty slot is found

• #failed probes is a measure of performance

Why?



Quadratic probing
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• Avoids primary clustering

• f(i) is quadratic in i, e.g., f(i) = i
• h_i(x) = (h(x) + i^2) mod TableSize

• Probe sequence: +0, +1, +4, +9, +16, …

• Example: insert 89, 18, 49, 58
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h0(89) = (h(89)+f(0)) mod 10 = 9
h0(18) = (h(18)+f(0)) mod 10 = 8
h0(49) = (h(49)+f(0)) mod 10 = 9 (X)
h1(49) = (h(49)+f(1)) mod 10 = 0

h0(58) = (h(58)+f(0)) mod 10 = 8 (X)
h1(58) = (h(58)+f(1)) mod 10 = 9 (X)
h2(58) = (h(58)+f(2)) mod 10 = 2

9 has been 
occupied

9 has been 
occupied

8 has been 
occupied



Quadratic probing
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#unsuccessful probes:                              0                      0                        1                       2 2      

Totally 5



Quadratic probing: analysis
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• Theorem 5.1
• New element can always be inserted into a table that is at least half empty and 

TableSize is prime

• Otherwise, may never find an empty slot, even is one exists

• Ensure table never gets half full
• If close, then expand it

• May cause “secondary clustering”: 
• elements that hash to the same position will probe the same alternative cells

• Take long time to find empty slots
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rehash



Quadratic probing: delete
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• Deletion
• Emptying slots can break probe sequence and could 

cause find stop prematurely

• Lazy deletion

• Differentiate between empty and deleted slot

• When finding, skip and continue beyond deleted slots

• If you hit a non-deleted empty slot, then stop find 
procedure returning “not found”

• When does it really (physically) delete the data?
• Delete upon insert

• Compaction at some time
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occupied

unoccupied

occupied

unoccupied

0th probe

1st probe

2nd probe?

3rd probe?



Quadratic probing
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40Figure 5.14

For lazy deletion



Quadratic probing
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Initialize by 
EMPTY



Quadratic probing
Hashing
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Clear hash table: 
set to EMPTY



Quadratic probing
Hashing
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Quadratic probing 
position



Quadratic probing
Hashing
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Skip DELETED

offset: a sequence of 
odd numbers: 1, 3, 5, …

currentPos: sum 
of odd numbers

Sum of i odd 
numbers == i^2



Quadratic probing
Hashing

WSU
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Labeled as  DELETED

Find quadratic 
probing position

Find quadratic 
probing position

Labeled as  ACTIVE



Double hashing
Hashing
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• Use a second hash function

• Good choices for h_2(x) ?
• Should never evaluate to 0

• e.g., h_2(x) = R – (x mod R)

• R is prime number less than TableSize

• Previous example with R=7
• h_2(x) = 7 – (x mod 7)

• f(i) = i * h_2(x)

• h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

• h1(49) = (h(49)+1*(7 – 49 mod 7)) mod 10 = 6
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h_i(x) = (h(x) + f(i)) 



Double hashing: example
Hashing

WSU
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#unsuccessful probes:                              0                      0                        1                       1 2      

Totally 4

collision

collision

collision 1

collision 2



Double hashing: analysis
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• TableSize must be prime

• Empirical tests show double hashing close to random probing

• Extra hash function takes extra time to compute
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Probing techniques: review
Hashing
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0th probe

1st probe

2nd probe

3rd probe

0th probe

1st probe

2nd probe

3rd probe

Populate 
x here

0th probe

1st probe

2nd probe

3rd probe

linear probing quadratic probing double hashing



Rehashing 
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• Increases the size of the hash table when load factor becomes “too 
high” (defined by a cutoff)
• Anticipating that prob(collisions) would become higher

• Typically expand the table to twice its size (but still prime)

• Need to reinsert all existing elements into new hash table
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Rehashing: example
Hashing

WSU
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h(x) = x mod 7
λ = 0.57

Insert 23

λ = 0.71

rehashing

h(x) = x mod 17
λ = 0.29



Rehashing: analysis
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• Rehashing takes time to do N insertions
• O(N)

• Therefore, should do it infrequently

• Specifically
• Must have been N/2 insertions since last rehash

• Amortizing the O(N) cost over the N/2 prior insertions yields only constant 
additional time per insertion
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Rehashing: implementation
Hashing
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• When to rehash?
• When load factor reaches some threshold  (e.g,. λ ≥0.5), OR

• When an insertion fails

• Applies across collision handling schemes
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Rehashing for separate chaining
Hashing
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Double the size

Empty each list

Each list

Each element



Rehashing for quadratic probing
Hashing
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Double the size

Empty each element

Each element



Hash tables in C++ STL
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• Some implementations of STL have hash tables (e.g., SGI STL)

• hash_set

• hash_map
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STL unordered_map
Hashing
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• unordered_map: A better option for hash table

• Supported in C++ 11 and later

• Supports a standard interface for common hash table operations

• Operations on average are O(1)
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Problems with large tables
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• What if hash table is too large to store in main memory?

• Solution: Store hash table on disk
• Minimize disk accesses

• But…
• Collisions require disk accesses

• Rehashing requires a lot of disk accesses

58

Solution: 
extendible hashing



Hash table applications
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• Symbol table in compilers

• Accessing tree or graph nodes by name
• e.g., city names in Google maps

• Maintaining a transposition table in games
• Remember previous game situations and the move taken (avoid re-

computation)

• Dictionary lookups
• Spelling checkers

• Natural language understanding (word sense)

• Heavily used in text processing languages
• e.g., Python dictionary
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Hashing: summary
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• Hash tables support fast insert and  search
• O(1) insert, search, delete avg performance

• Deletion possible, but degrades  performance

• Not suited if ordering of elements is  important

• Many applications
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Hashing: checklist to remember
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• Table size prime

• Table size much larger than number of inputs  (to maintain λ closer to 
0 or < 0.5)

• Tradeoffs between chaining vs. probing

• Collision chances decrease in this order:  

  linear probing > quadratic probing > {random probing, double hashing}

• Rehashing required to resize hash table at a  time when λ exceeds a 
threshold (usually 0.5)

• Good for searching. Not good if there is some order implied by data
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