
CPTS 223 Advanced Data
Structure C/C++

Tree: Red-Black Trees

1

Overview
Tree: Red-Black Trees

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

2

This time: RB trees (practically
used self-balanced BSTs)

Red-black trees
Tree: Red-Black Trees

WSU

• Operations take worst case O(log N) time

• Less rotations or no rotations (reduces stack overhead)

• It has some interesting properties that generate the kinds of behavior
we want (not as obvious why at first).

• Unlike Splay Trees, Red-Black trees definitely in use
• e.g., STL set and map

3

R-B trees v.s. AVL trees?
Tree: Red-Black Trees

WSU

• Search: AVL trees provide slightly faster lookups than R-B trees
because of their stricter balance

• Insertion/Deletion: R-B trees provide faster insertion and removal
since they end up with fewer rotations due to less strict balance

• Storage: AVL height information must be an int while a R-B color can
be a bit

• R-B trees are used in STL like maps, multimap, multiset in C++ while
AVL trees are used more in databases for faster retrievals

4

R-B trees v.s. AVL trees?
Tree: Red-Black Trees

WSU

5

Recall AVL condition

After inserting same number
of items, R-B Tree is slightly

higher/deeper than AVL Tree

• Search: AVL trees provide slightly faster lookups than R-B trees
because of their stricter balance

• Insertion/Deletion: R-B trees provide faster insertion and removal
since they end up with fewer rotations due to less strict balance

• Storage: AVL height information must be an int while a R-B color can
be a bit

• R-B trees are used in STL like maps, multimap, multiset in C++ while
AVL trees are used more in databases for faster retrievals

R-B trees: definition
Tree: Red-Black Trees

WSU

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes

6

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

7

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes

Node color property

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

8

Root property

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

9

Red property

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

10

Black property

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

11

Black property

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes
Black height: the number of

black nodes on the path
from root to a leaf node

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

12

Black property

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes
Black height: the number of

black nodes on the path
from root to a leaf node

Black height >= h/2

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

13

Black property

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes
Black height: the number of

black nodes on the path
from root to a leaf node

Black height >= h/2

R-B coloring rules

h <= 2 log2(n+1)
with n nodes

R-B trees: definition
Tree: Red-Black Trees

WSU

14

• It is a BST

• Every node is colored either red or black

• The root is black

• If a node is red, its children must be black (no adjacent red nodes)

• Every path from a node to a null pointer must contain the same
number of black nodes

• Null pointers (NIL nodes) are treated as black nodes

Leaf property

R-B coloring rules

R-B trees: definition
Tree: Red-Black Trees

WSU

15
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

R-B trees: definition
Tree: Red-Black Trees

WSU

16
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Null pointer (NIL
nodes): treated as
black leaf nodes

Leaf property

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

R-B trees: definition
Tree: Red-Black Trees

WSU

17
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Violation of red property:
If a node is red, its children
must be black (no adjacent
red nodes)

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

R-B trees: definition
Tree: Red-Black Trees

WSU

18
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

This path: # of black
nodes = 0

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

R-B trees: definition
Tree: Red-Black Trees

WSU

19
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

This path: # of black
nodes = 1

This path: # of black
nodes = 0

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

R-B trees: definition
Tree: Red-Black Trees

WSU

20
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

This path: # of black
nodes = 1

This path: # of black
nodes = 0

Violation of black property:
Every path from a node to a
null pointer must contain the
same number of black nodes

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

R-B tree implementation
Tree: Red-Black Trees

WSU

21

R-B tree node AVL node

R-B tree implementation
Tree: Red-Black Trees

WSU

22

R-B tree node

• The balance is ensured by the patterns of colors
allowed and the rotations/recolorings to fix the tree
after inserts and deletes

• This is not a tree that enforces balance like an AVL
tree, but it ends up behaving in a way that is just as
good (almost as good)

R-B tree: example
Tree: Red-Black Trees

WSU

23

In Textbook:
• Double circles: red
• Single circles: black
• Null ptrs omitted

Top-down insert
(Chapter 12.2.2)

Try visualization at https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html

https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

• Step 1: X is inserted at leaf (null ptr, as BST) and always colored red

• Step 2: adjust the structure and color case by case
• Case 1: parent of X is black: done

• Case 2: parent of X is red, then it violates the red property

• Need further adjustment to resolve two consecutive red nodes

• Case 2.1: aunt (sibling of parent) of X is black

• Rotation

• Recoloring for case 2.1

• Case 2.2: aunt (sibling of parent) of X is red
• Rotation

• Recoloring for case 2.2
24

Red property:
no consecutive red nodes

Why not coloring X black?

It will change the # of black nodes in path:
violates black property

The same
rotation method Different recoloring method

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

25

Notations:
X: the inserted node
P: parent of X
G: grandparent of X
S: sibling of P
A, B, C: subtrees (for
general rotations)

Case 2.1:
P is red
S is black

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

26

Notations:
X: the inserted node
P: parent of X
G: grandparent of X
S: sibling of P
A, B, C: subtrees (for
general rotations)

Single rotation: P and G

Case 2.1:
P is red
S is black

Double rotation:
First: P and X
Second: X and G

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

27

Case 2.1:
P is red
S is black

Recoloring for case 2.1:
1. New root will be black
2. Nodes at the ends (left

and right) need their
colors unchanged

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

28

Case 2.1:
P is red
S is black

Red property
• After adjustment:

No consecutive
red nodes

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

29

Case 2.1:
P is red
S is black

Black property :
• Black height (BH) of

each subtrees:
BH(A) = BH(B) = BH(C)+1
• # of black nodes from

each node to null ptrs
remains unchanged

Black property :
• Black height (BH) of

each subtrees:
BH(A) = BH(B1) = BH(B2)

= BH(C)+1
• # of black nodes from

each node to null ptrs
remains unchanged

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

30

A

B

C

G

P S

X A

B

C

G

P

S

X

Case 2.2:
P is red
S is red

Single rotation:
P and G

New root
will be red

S will be
still red

After: X and G
are black

Before: P and
S are red

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

31

A

B

C

G

P S

X A

B

C

G

P

S

X

Red property :
No consecutive red nodes

Black property :
• Black height (BH) of each subtrees:

BH(A) = BH(B) = BH(C)
• # of black nodes from each node

to null ptrs remains unchanged

Case 2.2:
P is red
S is red

R-B tree: bottom-up insert
Tree: Red-Black Trees

WSU

32

A

B

C

G

P

S

X

A

B

C

G

P S

X

However, if great
grand parent is red

Case 2.2:
P is red
S is red

Red property :
No consecutive red nodes

Solution: percolate
up until root

R-B tree: top-down procedure
Tree: Red-Black Trees

WSU

• An alternative to the bottom-up R-B trees

• More practically used

• e.g., Figure 12.9 in Textbook is constructed by a top-down R-B tree
(rather than a bottom-up one)

• Technique: color flip

• Target: avoid Case 2.2 happening

33

Case 2.2:
P is red
S is red

Top-down R-B trees: color flip
Tree: Red-Black Trees

WSU

• On the way down from the root to search null ptr for insertion:

• If we see a node X with two red children, we make X red and the
children black

• If X is root, recolor X black

• If X’s parent is also red:
• Fix it with rotation (zig-zag or zig-zig)

• Avoid Case 2.2: no need for percolation up

34

Color flip is done before
finding the position to
insert the new node

Top-down R-B trees: example
Tree: Red-Black Trees

WSU

35

1. Color flip at 50 (to red)
2. 50 and 60 are both red
3. Single rotation: 70-60-50

when finding the
location to insert 45

Top-down R-B trees: example
Tree: Red-Black Trees

WSU

36

1. Color flip at 50 (to red)
2. 50 and 60 are both red
3. Single rotation: 70-60-50

when finding the
location to insert 45

R-B trees: delete
Tree: Red-Black Trees

WSU

• Similar to a BST delete, but we need to ensure the R-B properties are
maintained if we delete a black node (thereby violating the black
property)

• If Node has two children: replace with smallest in right subtree

• If Node only has a right child: ditto (the same)

• If Node with only a left child: replace with largest node in left subtree

37

BST delete

R-B trees: delete
Tree: Red-Black Trees

WSU

• Case study for the node to be deleted

• If it is red, then make the new node black and quit

• If it is black… that would violate the black property since the tree
would lose a black node in the root->nullNode black-height count

• Solution: when top-down pass, ensure the leaf node red

38

Deleting a red node:
lack property

Top-down R-B trees: delete
Tree: Red-Black Trees

WSU

• Assume initial status:
• X == current node
• T == sibling of X
• P == parent of both

• As we traverse down the tree, we attempt to ensure X is red

• Root sentinel: temporarily regard root as red

39

P

X T

If P is red, then X
and T must be black

Goal: ensure X is red

Before top-down
pass: X is black

R

X T

X, T: black

P: red

Top-down R-B trees: delete
Tree: Red-Black Trees

WSU

• Case 1: X has two black child nodes

• Three subcases:
• Subcase 1: T has two black child nodes

40

X has two
black children

T has two
black children

Color flipping

Goal: ensure X is red

Top-down R-B trees: delete
Tree: Red-Black Trees

WSU

• Case 1: X has two black child nodes

• Three subcases:
• Subcase 2: T has one red child node (left)

41

X has two
black children

T has one
red child

Double rotation
+ recolor

Goal: ensure X is red

Top-down R-B trees: delete
Tree: Red-Black Trees

WSU

• Case 1: X has two black child nodes

• Three subcases:
• Subcase 2: T has one red child node (right)

42

X has two
black children

T has one
red child

Single rotation
+ recolor

Goal: ensure X is red

Top-down R-B trees: delete
Tree: Red-Black Trees

WSU

• Case 2: X has at least a red child node

• Action: fall to the next level and get new P, X, T nodes
• Subcase 1: top-down pass continues a red node as X

43

P

X T

Red X must have
two black children

Fall down the next level:
get new P, X and T nodes

This returns to
the initial status:
red P
black X and T

P

X T

A B

G

P S

X T

Fall down the next level:
get new P, X and T nodes

Top-down R-B trees: delete
Tree: Red-Black Trees

WSU

• Case 2: X has at least a red child node

• Action: fall to the next level and get new P, X, T nodes
• Subcase 1: top-down pass continues a black node as X

44

Fall down the next
level: get new P, X
and T nodesP

X T

A B

G

P S

X T

Single rotation:
P and T
+ recolor

G

P

S

X

T

This returns to
the initial status:
red P
black X and T

Red T must
have two
black children

R-B tree: summary
Tree: Red-Black Trees

WSU

• STL set and map classes use balanced trees to support logarithmic
insert, delete and search

• Implementation uses top-down red-black trees

45

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Red-black trees
	Slide 4: R-B trees v.s. AVL trees?
	Slide 5: R-B trees v.s. AVL trees?
	Slide 6: R-B trees: definition
	Slide 7: R-B trees: definition
	Slide 8: R-B trees: definition
	Slide 9: R-B trees: definition
	Slide 10: R-B trees: definition
	Slide 11: R-B trees: definition
	Slide 12: R-B trees: definition
	Slide 13: R-B trees: definition
	Slide 14: R-B trees: definition
	Slide 15: R-B trees: definition
	Slide 16: R-B trees: definition
	Slide 17: R-B trees: definition
	Slide 18: R-B trees: definition
	Slide 19: R-B trees: definition
	Slide 20: R-B trees: definition
	Slide 21: R-B tree implementation
	Slide 22: R-B tree implementation
	Slide 23: R-B tree: example
	Slide 24: R-B tree: bottom-up insert
	Slide 25: R-B tree: bottom-up insert
	Slide 26: R-B tree: bottom-up insert
	Slide 27: R-B tree: bottom-up insert
	Slide 28: R-B tree: bottom-up insert
	Slide 29: R-B tree: bottom-up insert
	Slide 30: R-B tree: bottom-up insert
	Slide 31: R-B tree: bottom-up insert
	Slide 32: R-B tree: bottom-up insert
	Slide 33: R-B tree: top-down procedure
	Slide 34: Top-down R-B trees: color flip
	Slide 35: Top-down R-B trees: example
	Slide 36: Top-down R-B trees: example
	Slide 37: R-B trees: delete
	Slide 38: R-B trees: delete
	Slide 39: Top-down R-B trees: delete
	Slide 40: Top-down R-B trees: delete
	Slide 41: Top-down R-B trees: delete
	Slide 42: Top-down R-B trees: delete
	Slide 43: Top-down R-B trees: delete
	Slide 44: Top-down R-B trees: delete
	Slide 45: R-B tree: summary

