CPTS 223 Advanced Data
Structure C/C++

Tree: Red-Black Trees

Tree: Red-Black Trees

Overview

 Tree data structure

* Binarysearch trees

* Support O(lg(n)) operations

e Balanced trees<(This time: RB trees (practically]
used self-balanced BSTs)

* STL set and map classes
* B-trees for accessing secondary storage
* Applications of Tree

Tree: Red-Black Trees

Red-black trees

* Operations take worst case O(log N) time
* Lessrotations or no rotations (reduces stack overhead)

* It has some interesting properties that generate the kinds of behavior
we want (not as obvious why at first).

* Unlike Splay Trees, Red-Black trees definitely in use
* e.g.,STLsetand map

Tree: Red-Black Trees

R-B trees v.s. AVL trees?

» Search: AVL trees provide slightly faster lookups than R-B trees
because of their stricter balance

* Insertion/Deletion: R-B trees provide faster insertion and removal
since they end up with fewer rotations due to less strict balance

* Storage: AVL height information must be an int while a R-B color can
be a bit

* R-BtreesareusedinSTL like maps, multimap, multiset in C++ while
AVL trees are used more in databases for faster retrievals

Tree: Red-Black Trees

R B trees v.s. AVL trees?

After inserting same number}

of items, R-BTree is slightly
higher/deeper than AVL Tree

» Search: AVL trees provide slightly faster lookups than R-B trees
because of their stricter balance = Recall AVL condition |

* Insertion/Deletion: R-B trees provide faster insertion and removal
since they end up with fewer rotations due to less strict balance

* Storage: AVL height information must be an int while a R-B color can
be a bit

* R-BtreesareusedinSTL like maps, multimap, multiset in C++ while
AVL trees are used more in databases for faster retrievals

Tree: Red-Black Trees

R-B trees: definition

e |tisaBST

———
' d
' S

«/ Every node is colored either red or black @loring rules |
. Therootis black i

- If a node is red, its children must be black (no adjacent red nodes)

- Every path from a node to a null pointer must contain the same
i number of black nodes

"\ Null pointers (NIL nodes) are treated as black nodes

~ -’

,l

Tree: Red-Black Trees

R-B trees: definition

o,

" Every node is colored either red or black @Ioring rules |
The root is black

If a node is red, its children must be black (no adjacent red nodes)

Every path from a node to a null pointer must contain the same
number of black nodes

S
Ty L —————

. Null pointers (NIL nodes) are treated as black nodes

~ -’

-

,l

Tree: Red-Black Trees

R-B trees: definition

e |tisaBST

———
' d
' S

/" Every node is colored either red or black %Ioring rules]
. The rootis black 4 Root property] i

- If a node is red, its children must be black (no adjacent red nodes)

- Every path from a node to a null pointer must contain the same
i number of black nodes

"\ Null pointers (NIL nodes) are treated as black nodes

~ -’

,l

Tree: Red-Black Trees

R-B trees: definition

* ItisaBST
.I"/Evel’y node is colored either red or black Qmm{g rules |
* The root is black _Red property | 5

. N
o If a node is red, its children must be black (no adjacent red nodes)

- Every path from a node to a null pointer must contain the same
i number of black nodes

°‘\ Null pointers (NIL nodes) are treated as black nodes

~ -’

,l

Tree: Red-Black Trees

R-B trees: definition

e |tisaBST

———
' d
7’ S

«/ Every node is colored either red or black Qloring rules |
. Therootis black i

- If a node is red, its children must be black (no adjacent red nodes)

Every path from a node to a null pointer must contain the same
i number of black nodes[

' Black property]
*'_Null pointers (NIL nodes) are treated as black nodes

~ -’

,l

10

Tree: Red-Black Trees

R-B trees: definition

* ItisaBST
»/ "Every node is colored either red or black @Iorin}; rules |
. Therootis black

If a node is red, its children must be black (no adjacent red nodes)

o

Every path from a node to a null pointer must contain the same
number of black nodes[

Black property]
es) are treated as black nodes

7’

’
--

-

Black height: the number of
black nodes on the path
from root to a leaf node

11

Tree: Red-Black Trees

R-B trees: definition

e |tisaBST

———
' d
' S

«/ Every node is colored either red or black @loring rules |
The rootis black '

If a node is red, its children must be black (no adjacent red nodes)

o

Every path from a node to a null pointer must contain the same
number of black nodes[

Black property]
es) are treated as black nodes

’
--

-

Black height: the number of
black nodes on the path
from root to a leaf node

Black height >=h/2]

Tree: Red-Black Trees

R-B trees: definition

e |tisaBST

———
' d
' S

«/ Every node is colored either red or black @loring rules |
The rootis black '

If a node is red, its children must be black (no adjacent red nodes)

o

Every path from a node to a null pointer must contain the same
number of black nodes[

Black property]
es) are treated as black nodes

’
--

Black height >= h/2 J{ h <=2log2(n+1)]

-

Black height: the number of
black nodes on the path
from root to a leaf node

with n nodes

Tree: Red-Black Trees

R-B trees: definition

 |tisaBST
. /Every node is colored either red or black Qloriﬂg rules]
. Therootisblack

If a node is red, its children must be black (no adjacent red nodes)

o,

Every path from a node to a null pointer must contain the same
number of black nodes

S
Ty L —————

. Null pointers (NIL nodes) are treated as black nodes

’

-

,l

\N

Tree: Red-Black Trees

R-B trees: definition

Example of Red-black Tree

.
N

A inorrect Red-black Tree A correct Red-black Tree

oG

Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

15

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Tree: Red-Black Trees

R-B trees: definition

56
Example of Red-black Tree

100 [Leaf property]
/ Nul‘l,pointer (NIL
145 nodes): treated as
black leaf nodes
K< m f

A inorrect Red-black Tree A correct Red-black Tree

. : . 6
Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/ !

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Tree: Red-Black Trees

R-B trees: definition

oS
Example of Red-black Tree
N
Violation of red property:
If a node isred, its children
must be black (no adjacent
\red nodes) &
145
le
A inorrect Red-black Tree ‘A correct Red-black Tree

Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Tree: Red-Black Trees

R-B trees: definition

S,

Example of Red-black Tree

145

1o

[This path: # of black
nodes =0

A inorrect Red-black Tree

¢

A correct Red-black Tree

Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Tree: Red-Black Trees

R-B trees: definition

Example of Red-black Tree

145

[This path: # of black
nodes =0

¢

A correct Red-black Tree

This path: # of black
nodes =1

Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/ 9

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

o

Tree: Red-Black Trees

R-B trees: definition

Violation of black property:
Every path from a node to a
null pointer must contain the
same number of black nodes

|

This path: # of black
nodes =0

'~
>
-
Ty
Y,

\

145

This path: # of black
nodes =1

S,

Example of Red-black Tree

¢

A correct Red-black Tree

Image credit: https://www.geeksforgeeks.org/introduction-to-red-black-tree/

20

https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Tree: Red-Black Trees

R-B tree iImplementation

[R-B tree nodi] l AVL nodev]

25 private:

26 struct RedBlackNode I struct AviNode

27 { 2 A

28 Comparable element; 3 Comparable element;
29 RedBlackNode *left; 4 AviNode *left;
30 RedBlackNode *right;) AviNode *right;
31 int color; 6 int height;

29

Figure 12.14 C(lass interface and constructor Figure 4.40 Node declaration for AVL trees

21

Tree: Red-Black Trees

R-B tree iImplementation

25
26
27
28
29
30
31

29

Figure 12.14 C(lass interface and constructor

[R-B tree nodi]
\\

private:
struct RedBlackNode
{
Comparable element;
RedBlackNode *1eft;
RedBlackNode *right;
int color;

The balance is ensured by the patterns of colors

allowed and the rotations/recolorings to fix the tree

after inserts and deletes
This is not a tree that enforces balance like an AVL

tree, but it ends up behavingin a way that is just as

good (almost as good)

~

)

22

Tree: Red-Black Trees

R-B tree: example .

In Textbook:
* Double circles: red

(30 ! Rulipirsomtted
(15 (10
O (85)
© ORS

Figure 12.9 Example of a red-black tree (insertion sequence is: 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55)

J

Top-down insert
(Chapter12.2.2)

Try visualization at https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html

23

https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html

Tree: Red-Black Trees

R-B tree: bottom-up insert

It will change the # of black nodes in path:
violates black property Why not coloring X black?]

* Step1:Xisinserted at leaf (null ptr, as BST) and always colored red

no consecutive red nodes

* Step 2:adjust the structure and color case by cas;\ Red property: J
* (Case1: parent of Xis black: done
* (Case 2: parent of X is red, then it violates the red property
* Need further adjustment to resolve two consecutive red nodes

* (ase 2.1: aunt (sibling of parent) of X is black
* Rotation

/ * Recoloringforcase 2.1
The same T | . .
 Case 2.2: aunt (sibling of parent) of X is red Different recoloring method

rotation method N

* Recoloringforcase 2.2

24

Tree: Red-Black Trees

R-B tree: bottom-up insert
(oo

X: the inserted node
P: parent of X
G: grandparent of X

S: sibling of P
A, B, C: subtrees (for
Qeneral rotations)

B1 B2

P is red

Case 2.1:
Figure 12.10 Zig rotati d zig-zag rotati k ifl S is blacks
g lg rotation an Zlg vd g rotation workK1 1S Dlac S iS bIack

Tree: Red-Black Trees

R-B tree: bottom-up insert

X: the inserted node
P: parent of X
G: grandparent of X

S: sibling of P
A, B, C: subtrees (for
Qeneral rotations)

[Double rotation:\'

First: Pand X
Second: Xand G

B1 B2 (Case 2.1:
Figure 12.10 Zig rotation and zig-zag rotation work if| S is blacks P © ee

Sis black
26

Tree: Red-Black Trees

R-B tree: bottom-up insert

-

Recoloring for case 2.1:

1. New root will be black
2. Nodes at the ends (left

andright) need their
colors unchanged

/

B1 B2

(Case 2.1:

Figure 12.10 Zig rotation and zig-zag rotation work if

S is blacks

Pis red
Sis black

]7

27

Tree: Red-Black Trees

R-B tree: bottom-up insert

/

Red property
* After adjustment:

o

No consecutive
red nodes

J

B1 B2

Figure 12.10 Zig rotation and zig-zag rotation work if

S is blacks

(Case 2.1:
Pis red
Sis black

28

Tree: Red-Black Trees

ﬁBIack property 4 : \

* Black height (BH) of
each subtrees: y
BH(A) = BH(B) = BH(C)+1
* # of black nodes from
each node to null ptrs

k remains unchanged /
ﬁlack property ik

* Black height (BH) of
each subtrees:
BH(A) = BH(B1) = BH(B2)
= BH(C)+1

 # of black nodes from

B1 B2

(Case 2.1:

each node to null ptrs
remains unchanged

Figure 12.10 Zig rotation and zig-zag rotation work if

S is blacks

Pis red
Sis black

}7

29

R-B tree: bottom-up insert

Case 2.2:
P is red
Sisred

Tree: Red-Black Trees

R-B tree: bottom-up insert

Case 2.2: Red property [:]

Pis red No consecutive red nodes
Sisred

/Black property 4.
* Black height (BH) of each subtrees:
BH(A) = BH(B) = BH(C)

* # of black nodes from each node
_ to null ptrs remains unchanged

31

Tree: Red-Black Trees

R-B tree: bottom-up insert

c Solution: percolate
2.2: _ : .

Pa;:ered However, if great IIfled Propertty X: o | uP until root

e grand parent is red o consecutive red nodes .

32

Tree: Red-Black Trees

R-B tree: top-down procedure

* An alternative to the bottom-up R-B trees
* More practically used

* e.qg. Figure12.9inTextbook is constructed by a top-down R-B tree
(rather than a bottom-up one)

* Technique: colorflip

* Target: avoid Case 2.2 happening

Case 2.2: - i Nou s
1

Pisred
[Sisred] <:>

33

Top-down R-B trees: color flip

* 1On the way down from the root to search null ptr for insertion:

[]
—
2
(D
wn
(D
(D
)
-
)
Q.
(D
X
2
~t
-
~
2
o
R
(D
o
0
=]
Q
pa)
(D
=)
2
(D
=
Y
~
(D
X
R
(D
Q.
)
>
o
—t
>
(D

Color flip is done before
finding the position to
insert the new node

If X's parent is also red:
* Fix it with rotation (zig-zag or zig-zig)

[]
[rm——————————————

Figure 12.11 Color {lip: only if X’s parent is red do we continue with a rotation

Tree: Red-Black Trees

Top-down R-B trees: example

[When finding the

location to insert 45 —~—_ /A\ ~
R

Figure 12.9 Example of a red-black tree (insertion sequence is: 10, § 1. Colorflip at 50 (to red)
30, 50, 65, 80, 90, 40, 5, 55) 2. 50 and 60 are both red
3. Single rotation: 70-60-50
- J

35

Tree: Red-Black Trees

Top-down R-B trees: example

\
@ @ 1. Colorflipat 5o (to red)
2. 5oand 6o are both red
3. Single rotation: 70-60-50
J

[when finding the

location to insert 45 g

R
Figure 12.9 Example of a red-black tree (insertion sequence is: 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55)

Figure 12.12 Insertion of 45 into Figure 12.9 36

Tree: Red-Black Trees

R-B trees: delete

* Similarto a BST delete, but we need to ensure the R-B properties are
maintained if we delete a black node (thereby violating the black

property)

* |If Node has two children: replace with smallest in right subtree
* |If Node only has a right child: ditto (the same)

* |If Node with only a left child: replace with largest node in left subtree

l BST delete I

37

Tree: Red-Black Trees

R-B trees: delete

eleting ared node:J

D
lack property
* (Case study forthe node to be deleted)

o |Ifitisred, then make the new node black and\ﬁuit

 Ifitisblack...that would violate the black property since the tree
would lose a black node in the root->nullNode black-height count

* | Solution: when top-down pass, ensure the leaf node red

38

Tree: Red-Black Trees

Top-down R-B trees: delete

—

| Before top-down
{IfP is red, then X L (pass:Xis black
dT t be black
and T must be black =)

* Assume initial status: </G | s
X, T- black e | X ==current node Ooal: ensure Aisre
[}? T ==sibling of X £ N £ N

» P == parent of both

* As we traverse down the tree, we attempt to ensure X is red

* Root sentinel: temporarily regard root as red

OO

39

Top-down R-B trees: delete

e (Case1: Xhastwo black child nodes

e Three subcases:
e Subcase 1: T has two black child nodes

Goal: ensure X is red]

[X has two
black children

VAV

[T has two _]
black children

Top-down R-B trees: delete

e (Case1: Xhastwo black child nodes

 Three subcases:
* Subcase 2:T has one red child node (left)

Double rotation
+ recolor

[X has two
black children

T has one
red child

Goal: ensure X is red]

41

Top-down R-B trees: delete

e (Case1: Xhastwo black child nodes

 Three subcases:
* Subcase 2: T has one red child node (right)

Single rotation
+ recolor

[

X hastwo
black children

T has one
red child

Figure 12.17 Three cases when X is a left child and has two black children

42

Top-down R-B trees: delete

e (Case 2: X has atleast ared child node

* Action: fall to the next level and get new P, X, T nodes

Subcase 1: top-down pass continues a red node as X

Fall down the next level:
get new P, Xand T nodes

J

Red X must have

two black children

J

This returnsto
the initial status:
red P

black XandT

\

J

43

Top-down R-B trees: delete

e (Case 2: X has atleast ared child node

* Action: fall to the next level and get new P, X, T nodes
* Subcase 1: top-down pass continues a black node as X

Fall down the next Single rotation:
level: get new P, X @ PandT @

+ recolor

and T nodes

JThis returns to)

the initial status:
red P
black XandT

44,

Red T must
have two

black children

Tree: Red-Black Trees

R-B tree: summary

* STL set and map classes use balanced trees to support logarithmic
insert, delete and search

* Implementation uses top-down red-black trees

45

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Red-black trees
	Slide 4: R-B trees v.s. AVL trees?
	Slide 5: R-B trees v.s. AVL trees?
	Slide 6: R-B trees: definition
	Slide 7: R-B trees: definition
	Slide 8: R-B trees: definition
	Slide 9: R-B trees: definition
	Slide 10: R-B trees: definition
	Slide 11: R-B trees: definition
	Slide 12: R-B trees: definition
	Slide 13: R-B trees: definition
	Slide 14: R-B trees: definition
	Slide 15: R-B trees: definition
	Slide 16: R-B trees: definition
	Slide 17: R-B trees: definition
	Slide 18: R-B trees: definition
	Slide 19: R-B trees: definition
	Slide 20: R-B trees: definition
	Slide 21: R-B tree implementation
	Slide 22: R-B tree implementation
	Slide 23: R-B tree: example
	Slide 24: R-B tree: bottom-up insert
	Slide 25: R-B tree: bottom-up insert
	Slide 26: R-B tree: bottom-up insert
	Slide 27: R-B tree: bottom-up insert
	Slide 28: R-B tree: bottom-up insert
	Slide 29: R-B tree: bottom-up insert
	Slide 30: R-B tree: bottom-up insert
	Slide 31: R-B tree: bottom-up insert
	Slide 32: R-B tree: bottom-up insert
	Slide 33: R-B tree: top-down procedure
	Slide 34: Top-down R-B trees: color flip
	Slide 35: Top-down R-B trees: example
	Slide 36: Top-down R-B trees: example
	Slide 37: R-B trees: delete
	Slide 38: R-B trees: delete
	Slide 39: Top-down R-B trees: delete
	Slide 40: Top-down R-B trees: delete
	Slide 41: Top-down R-B trees: delete
	Slide 42: Top-down R-B trees: delete
	Slide 43: Top-down R-B trees: delete
	Slide 44: Top-down R-B trees: delete
	Slide 45: R-B tree: summary

