
CPTS 223 Advanced Data 
Structure C/C++

Tree: Set and Map

1



Overview
Tree: Set and Map

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

2



Balanced BSTs
Tree: Set and Map

WSU

• AVL trees
• Guarantees O(log2 N) behavior

• Requires maintaining height information

• Splay trees
• Guarantees amortized O(log2 N) behavior

• Moves frequently-accessed elements closer to root of tree

• Other self-balancing BSTs:
• Red-black tree (used in STL)

• Scapegoat tree

• Treap

• All these trees assume N-node tree can fit in main memory
3



Balanced BSTs in STL
Tree: Set and Map

WSU

• vector and list STL classes inefficient for search

• STL set and map classes guarantee logarithmic insert, delete and 
search

• Internally use a red-black tree

4



STL set class
Tree: Set and Map

WSU

• STL set class is an ordered container that does not allow duplicates

• Like lists and vectors, sets provide iterators and related methods: 
begin, end, empty and size

• Sets also support insert, erase and find

5



STL set class
Tree: Set and Map

WSU

• insert adds an item to the set and returns an iterator to it

• Because a set does not allow duplicates, insert may fail
• In this case, insert returns an iterator to the item causing  the failure

• (if you want duplicates → use multiset)

• To distinguish between success and failure, insert returns a pair of 
results
• This pair structure consists of an iterator and a Boolean  indicating success

• pair<iterator,bool> insert (const Object & x);

6



STL pair class
Tree: Set and Map

WSU

• pair<Type1,Type2>

7

#include <utility>

pair<iterator,bool> insert (const Object & x)

{

  iterator itr;  

  bool found;

  …

  return pair<itr,found>;

}



STL set class
Tree: Set and Map

WSU

8

set<int> s;

//insert

for (int i = 0; i < 1000; i++) {

  s.insert(i);

}

// print

iterator<set<int>> it=s.begin();  

for(it=s.begin(); it!=s.end();it++) {

  cout << *it << “ “ << endl;

}

What order will the  
elements get printed?



STL set class
Tree: Set and Map

WSU

9

set<int> s;

//insert

for (int i = 0; i < 1000; i++) {

  s.insert(i);

}

// print

iterator<set<int>> it=s.begin();  

for(it=s.begin(); it!=s.end();it++) {

  cout << *it << “ “ << endl;

}

What order will the  
elements get printed?

Sorted order:
iterator does an 
in-order traversal



Set insert
Tree: Set and Map

WSU

• Giving insert a hint

• For good hints, insert is O(1)

• Otherwise, reverts to one-parameter insert

• For example:

10

pair<iterator,bool> insert(iterator hint, const Object & x);

set<int> s;

for (int i = 0; i < 1000000; i++)  

  s.insert(s.end(), i);

hint: represents the 
position where x should go



Set delete
Tree: Set and Map

WSU

• int erase (const Object & x);
• Remove x, if found

• Return number of items deleted (0 or 1)

• iterator erase (iterator itr);
• Remove object at position given by iterator

• Return iterator for object after deleted object

• iterator erase (iterator start, iterator end);
• Remove objects from start up to (but not including) end

• Returns iterator for object after last deleted object

• Again, iterator advances from start to end using in-order traversal

11



STL map class
Tree: Set and Map

WSU

• Associative container
• Each item is 2-tuple: [Key, Value]

• STL map class stores items sorted by Key

• set vs. map:
• set == map with no value (where key is the whole record)

• Keys must be unique (no duplicates)
• If you want duplicates → mulitmap

• Different keys can map to the same value

• Key type and Value type can be totally different
12



STL set and map classes
Tree: Set and Map

WSU

13

key (as well as 
the value)

key

Value (can be 
a struct by 

itself)

< >
< >

Each node in set Each node in map



STL map class
Tree: Set and Map

WSU

• Methods
• begin, end, size, empty, insert, erase, find

• Iterators reference items of type

      pair<KeyType,ValueType>

• Inserted elements are also of type

      pair<KeyType,ValueType>

14



STL map class
Tree: Set and Map

WSU

• Main benefit: overloaded operator[]

• If key is present in map
• Returns reference to corresponding value

• If key is not present in map
• Key is inserted into map with a default value

• Returns reference to default value

15

map<string,double> salaries;

salaries[“Pat”] = 75000.0;

ValueType & operator[] (const KeyType & key);



STL map example
Tree: Set and Map

WSU

16

struct ltstr

{

  bool operator()(const char* s1, const char* s2) const {

    return strcmp(s1, s2) < 0;

  }

};

int main()

{

  map<const char*, int, ltstr> months;

  months["january"] = 31;

  months["february"] = 28;

  months["march"] = 31;

  months["april"] = 30;

}

Key type Value type Comparator if key 
type not primitive

• You really do not have to call  
insert() explicitly.

• This syntax will do it for you.
• If element already exists, then 

value will be updated.



STL map example
Tree: Set and Map

WSU

17

...

months["may"] = 31;

months["june"] = 30;

...

months["december"] = 31;

cout << “february -> " << months[“february"] << endl;

map<const char*, int, ltstr>::iterator cur = months.find("june"); 

map<const char*, int, ltstr>::iterator prev = cur;

map<const char*, int, ltstr>::iterator next = cur;

++next; --prev;

cout << "Previous (in alphabetical order) is " << (*prev).first << endl;  

cout << "Next (in alphabetical order) is " << (*next).first << endl;

months["february"] = 29;

cout << “february -> " << months[“february"] << endl;

What will these 
two lines do?



Implementation of set and map
Tree: Set and Map

WSU

• Support insertion, deletion and search  in worst-case logarithmic time

• Use balanced binary search tree (a red-black tree)

• Support for iterator
• Tree node points to its predecessor and  successor

• Which traversal order?

18



When to use set and map
Tree: Set and Map

WSU

• set
• Whenever your entire record structure to be used as the Key

• e.g., to maintain a searchable set of numbers

• map
• Whenever your record structure has fields other than Key

• e.g., employee record (search Key: ID, Value: all other info such as name, salary, 
etc.)

19



Summary: trees so far
Tree: Set and Map

WSU

• Trees are ubiquitous in software

• Search trees important for fast search
• Support logarithmic searches

• Must be kept balanced (AVL, Splay, B-tree to be seen soon)

• STL set and map classes use balanced trees  to support logarithmic 
insert, delete and  search
• Implementation uses top-down red-black trees (not AVL) – Chapter 12 in the 

textbook

20


	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Balanced BSTs
	Slide 4: Balanced BSTs in STL
	Slide 5: STL set class
	Slide 6: STL set class
	Slide 7: STL pair class
	Slide 8: STL set class
	Slide 9: STL set class
	Slide 10: Set insert
	Slide 11: Set delete
	Slide 12: STL map class
	Slide 13: STL set and map classes
	Slide 14: STL map class
	Slide 15: STL map class
	Slide 16: STL map example
	Slide 17: STL map example
	Slide 18: Implementation of set and map
	Slide 19: When to use set and map
	Slide 20: Summary: trees so far

