
CPTS 223 Advanced Data
Structure C/C++

Tree: B-tree and B+ Tree

1

Overview
Tree: B-Tree and B+ Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

2

Overview
Tree: B-Tree and B+ Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

3

Accessing a hard disk
location takes about
5ms = 5,000,000ns

Accessing a solid state
drive location takes about
25us = 25,000ns

Data from https://www.pcmag.com/encyclopedia/term/access-time#:~:text=(1)%20Memory%20access%20time%20is,character%20after%20initiating%20a%20request.

https://www.pcmag.com/encyclopedia/term/access-time

Overview
Tree: B-Tree and B+ Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

4

Accessing a hard disk
location takes about
5ms = 5,000,000ns

Accessing a solid state
drive location takes about
25us = 25,000ns

Primary storage:
accessing a
SDRAM location
takes about 10ns

Data from https://www.pcmag.com/encyclopedia/term/access-time#:~:text=(1)%20Memory%20access%20time%20is,character%20after%20initiating%20a%20request.

https://www.pcmag.com/encyclopedia/term/access-time

Large Databases
Tree: B-Tree and B+ Tree

WSU

5

Organization Database Size

WDCC 6000TB

NERSC 2800TB

AT&T 323TB

Google 33 trillion rows (91 million insertions per day)

Sprint 3 trillion rows (100 million insertions per day)

ChoicePoint 250TB

Yahoo! 100TB

YouTube 45TB

Amazon 42TB

Library of Congress 20TB

Count the bytes
Tree: B-Tree and B+ Tree

WSU

• Kilo: x 103

• Mega: x 106

• Giga: x 109

• Tera: x 1012

• Peta: x 1015

• Exa: x 1018

• Zetta: x 1021

6

Count the bytes
Tree: B-Tree and B+ Tree

WSU

• Kilo: x 103

• Mega: x 106

• Giga: x 109

• Tera: x 1012

• Peta: x 1015

• Exa: x 1018

• Zetta: x 1021

7

Current limit for
single node storage

Needs more complicated
disk/IO machine

Tree: B-Tree and B+ Tree
WSU

8

• CPU: temporary
• Register (0, 1)

• Cache (L1, L2): B – KB, probably L3, MB

• Good for random access, pure electronic devices

• RAM (MB – 100 GB): temporary
• Physical RAM

• Virtual memory (disk)

• Good for random access, pure electronic devices

• Storage devices (100 GB - TB): permanent
• ROM/BIOS

• Removable Drives: USB

• Hard drive

• Good for sequential access, with a motor and head arm

• SSD

Storage in computer architecture

Count the bytes
Tree: B-Tree and B+ Tree

WSU

9

Primary storage Secondary storage

Hardware RAM, cache Disk (i.e., IO)

Storage capacity 100MB to ~100GB GB (109) to TB (1012)

Data persistence Temporary (erased after process
terminates)

Persistent (permanently stored)

Data access speed a few clock cycles (ie., x 10-9

seconds, ns)
milliseconds (x 10-3 seconds, ms)
Data seek + read

Use a balanced BST?
Tree: B-Tree and B+ Tree

WSU

• Google: 33 trillion items

• Indexed by ?
• IP, HTML page content

• Estimated access time (if we use a simple balanced BST):
• h = O(log2(33x10^12)) → 44.9 disk accesses

• Assume disk access speed: 120 disk accesses per second

• → Each search takes 0.37 seconds

• 0.37*1^6 / 3600=102.7778 hours

10

If we do one million (1^6) searches?

Height reduction
Tree: B-Tree and B+ Tree

WSU

• Balanced BST trees at best have heights O(lg (n))
• N=10^6 → log2(10^6) is roughly 20

• 20 disk seeks for each worse-case search would be too much

• → Reduce the height

• How?
• Increase the log base beyond 2

• e.g., log5(10^6) is < 9  halve the height

• Instead of binary (2-ary) trees, use m-ary search trees s.t. m>2

11

M-way search tree
Tree: B-Tree and B+ Tree

WSU

• Example: 3-way search tree

• Each node stores:
• ≤ 2 keys

• ≤ 3 children

• Height of a balanced 3-way search tree? (a function of N → h(N))

12

3 6

4 51 2 7 8

M-way search tree
Tree: B-Tree and B+ Tree

WSU

13

……

3-way search tree:
Accommodate up to 26 elements

4-way search tree:
Accommodate up to 63 elements

Height reduction
Tree: B-Tree and B+ Tree

WSU

14

M-way search tree
Tree: B-Tree and B+ Tree

WSU

• Each node access brings in (M-1) keys and M child pointers

• Choose M so node size = 1 disk block size

• Height of tree = Θ(logM(N))

15

….. key(M-1)

child0 child1 child(M-1)

key1

Should fit in one disk block

B-trees
Tree: B-Tree and B+ Tree

WSU

16

Actual data stored in the disk (at leaf levels of the B-tree) and only keys are stored in the main tree

disk

…

… …
……

Main memory: all internal nodes

….. key(M-1)

child0 child1 child(M-1)

key1

Should fit in one disk block

B-trees: example
Tree: B-Tree and B+ Tree

WSU

• A node should fit in one disk block

• Standard disk block size = 8192 bytes

• Assume keys use 32 bytes, pointers use 4 bytes
• Keys uniquely identify data elements

• Space per node = 32*(M-1) + 4*M = 8192 bytes

• M = 228

• log228(33x1012) = 5.7 (disk accesses)

• Each search takes 0.047 seconds

17
BST: 0.37 seconds

Factor 1: capacity
of a single block

Factor 2: size of
keys and pointers

B-tree (B+ tree) definition
Tree: B-Tree and B+ Tree

WSU

• Leaves store the real data items

• Internal nodes store up to M-1 keys
• s.t., key i is the smallest key in subtree i+1

• Root can have between 2 to M children

• Each internal node (except root) has between ceil(M/2) to M children

• All leaves are at the same depth

• Each leaf has between ceil(L/2) and L data items, for some L

18

Parameters: M, L

B-tree of order 5
Tree: B-Tree and B+ Tree

WSU

19

M=5 (order of the B+ tree)
L=5 (#data items bound for leaves)

• Each int. node (except root)
has to have at least 3 children

• Each leaf has to have at least 3
data items

root

Internal
node

leaves

B-tree of order 5
Tree: B-Tree and B+ Tree

WSU

20

Internal
node

root

Main memory: all internal nodes

leaves

Disk: all leaves

Data items stored at leaves
Each leaf = 1 disk block

Index to the Data (store only keys)
Each internal node = 1 disk block

B-tree of order 5: insert(57)
Tree: B-Tree and B+ Tree

WSU

21

• Searching by keys
• Insert if satisfying B-

tree condition

B-tree of order 5: insert(55)
Tree: B-Tree and B+ Tree

WSU

22

• Searching by keys
• Insert if satisfying B-tree condition
• If too many: split the leaf into two leaves

• Each leaf has between ceil(L/2) and L
data items, for some L

• Implementation: leaf node and are
sorted sequentially in the linked list.

B-tree of order 5: insert(40)
Tree: B-Tree and B+ Tree

WSU

23

Split into 5 node

B-tree of order 5: insert(40)
Tree: B-Tree and B+ Tree

WSU

24

The first node
splits into 2 node

B-tree of order 5: insert(40)
Tree: B-Tree and B+ Tree

WSU

25

Delete 99

B-tree of order 5: insert(40)
Tree: B-Tree and B+ Tree

WSU

26

Delete 99

• Each leaf has between ceil(L/2) and L
data items, for some L

B-tree of order 5: insert(40)
Tree: B-Tree and B+ Tree

WSU

27

Delete 99

• Each leaf has between ceil(L/2) and L
data items, for some L

• Each internal node (except root) has
between ceil(M/2) to M children

B-tree of order 5: delete(99)
Tree: B-Tree and B+ Tree

WSU

28

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Large Databases
	Slide 6: Count the bytes
	Slide 7: Count the bytes
	Slide 8
	Slide 9: Count the bytes
	Slide 10: Use a balanced BST?
	Slide 11: Height reduction
	Slide 12: M-way search tree
	Slide 13: M-way search tree
	Slide 14: Height reduction
	Slide 15: M-way search tree
	Slide 16: B-trees
	Slide 17: B-trees: example
	Slide 18: B-tree (B+ tree) definition
	Slide 19: B-tree of order 5
	Slide 20: B-tree of order 5
	Slide 21: B-tree of order 5: insert(57)
	Slide 22: B-tree of order 5: insert(55)
	Slide 23: B-tree of order 5: insert(40)
	Slide 24: B-tree of order 5: insert(40)
	Slide 25: B-tree of order 5: insert(40)
	Slide 26: B-tree of order 5: insert(40)
	Slide 27: B-tree of order 5: insert(40)
	Slide 28: B-tree of order 5: delete(99)

