CPTS 223 Advanced Data
Structure C/C++

Tree: Splay Tree

Tree: Splay Tree

Overview

Tree data structure

* Binarysearch trees
* Support O(lg(n)) operations
e Balanced trees

* STL setand map classes
* B-trees for accessing secondary storage
* Applications of Tree

Tree: Splay Tree

Splay tree

e (Observation:

* Heightimbalance is a problem only if & when the nodes in the deeper parts of
the tree are accessed

* Recently accessed nodes are more likely to be accessed again
e |dea: i not stop splaying until]
t

' hing th
* Bring the recently accessed nodes to be the roo [SEIGIE) HE O

* Amortize the overall search operation to O(log2 N) on average

Tree: Splay Tree

Splay tree

not stop splaying until]
* Strategy: reaching the root

After a node is accessed (search/insert), push it to the root via AVL rotations

Guarantees that any M consecutive operations on an empty tree will take at
most O(M log2 N) time—|_Divided by M

Amortized cost per operation is O(log2 N)
Worst case: O(N) when the tree is skewed and the target node is the deeper part
Does not require maintaining height or balance information

Tree: Splay Tree

Three types of cases

* Worst-case:
O(f(N)) = for each single operation
if we have M operations:
M * O(f(N)) = O(M * f(N)) = O(M * log(N))
° Average-case for 1000 cases:
O(fa(N) + f2(N) + ... + f1000(N) / 1000)

* Amortized analysis for any sequence of M operations:
O(f_1(N) +f_2(N) + ... + f_M(N)) = O(M * log(N))
for each operation: O(log(N))

Tree: Splay Tree

Splaying: zig-zag

* Node Xis right-child of parent, which is left-child of grandparent (or
vice-versa)

* Perform double rotation (left, right)
a ~N o~ B

N
B 2NN
2

Figure 4.48 Zig-zag

0

PN

Tree: Splay Tree

Splaying: zig-zag

* Node Xis right-child of parent, which is left-child of grandparent (or
vice-versa)

* Perform double rotation (left, right)

0

1) — &

A@A 7N

Figure 4.48 Zig-zag

/@A@xzw |
B

PN

Tree: Splay Tree

Sp

* No
VIC¢
e PerFigure 4.45 Double rotation
W=
A rotation? / \
(] (P)
N

A@A A X

Figure 4.48 Zig-zag

Tree: Splay Tree

Splaying: zig-zig

* Node Xiis left-child of parent, which is left-child of grandparent (or
right-right)

* Perform double rotation (right-right)

T
K AN

Figure 4.49 Zig-zig

AN

Tree:SplayTree

Splaying: zig-zig

o v
* Nod b -I/ A‘E.L. ‘Aﬂﬁl. .
|1gh1“£§‘k ‘A‘hi; Y z

Figure 4.43 Single rotation

o Perf

- @Alm tifﬁngl @\@
OGN
/X

Figure 4.49 Zig-zig

/

Tree: Splay Tree

Splay tree

& ‘

1. k_1 will be the root
2. k_2 will be left child of k_1a
] 3. k_3 will be the right child of k_1

Splaying at
node k_1

l Zig-zag I

13

Tree: Splay Tree

Splay tree

Continue

playing at
node k_1

14

Tree: Splay Tree

Splay tree

Continue

playing at
node k_1

15

Tree: Spl

Continue

playing at
node k_1

16

Tree: Spl

Continue

playing at
node k_1

BN

1. k_1 will be the root

2. k_4 will be the right child of k_a

3. k_5 will be the right child of k_4
_4- k_3 will be the left child of k_4)

~

17

Tree: Splay Tree

Splay tree

k_1 reaches the root
—> stop splaying

Tree: Splay Tree

Splay tree

Tree: Splay Tree

Splay tree

K’A

k) k)
[height=3 L A ks3) ks)

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

|

Splaying at
node 1

. : n
4
’
s
’
@ @
#
’
.
s
5
/
,
’
s
’
4
-
4
-
.
’

Figure 4.50 Result of splaying at node 1

21

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

;: n
4
’
s
’
@ @
#
’
.
s
5
/

|

— (4)
(4) 2) &
2) & 3
Splaying at o
node 1

Figure 4.50 Result of splaying at node 1

22

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

;: n
4
’
s
’
@ @
#
’
.
s
5
/

— OO
(4) 2) &
2) & 3
[Splaying at o
node 1

Figure 4.50 Result of splaying at node 1

23

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert 1, 2,

@

|

Splaying at
node 1

Figure 4.50 Result of splaying at node 1

, N

24

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

;: n
4

’

s

’
@ @
#

’

.

s

2

— (4)
(4) 2) &
© 3
[Splaying at o
node 1

Figure 4.50 Result of splaying at node 1

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

Splaying at
node 1

Figure 4.50 Result of splaying at node 1

26

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

Before:
height=6

Splaying at
node 1

Figure 4.50 Result of splaying at node 1

27

Tree: Splay Tree

Splay tree

* E.g., consider previous worst-case scenario: insert1, 2, ..., N

Before:
height=6

this substructure
to more nodes

We can generalize]

Splaying at
node 1

Figure 4.50 Result of splaying at node 1

28

Tree: Splay Tree

Splay tree

Figure 4.51 Result of splaying at node 1 a tree of all left children
29
[

Tree: Splay Tree

Splay tree

Figure 4.51 Result of splaying at node 1 a tree of all left children
30
[

Tree: Splay Tree

Splay tree

Continue splaying
nodes from smallest
to largest (2, 3, 4, -..)

Figure 4.51 Result of splaying at node 1 a tree of all left children

31

Splay tree

@
O)

[height="? g 28

8) 14 O O
(4) 10 @
® ©® © 4
& @

Figure 4.52 Result of splaying the previous tree at node 2 .

Tree: Splay Tree

Splay tree
. | height = ? |

©
O 20

(&) 14 19 Q) @ @ @
(6] 9 O O O O
» © © O

Figure 4.53 Result of splaying the previous tree at node 3

33

Tree: Splay Tree

Splay tree
. | height = ? |

(6) 19 16 24
& © © O 04 18 22 20
B & O ¢ ¢ @ &

Figure 4.54 Result of splaying the previous tree at node 4

29

3D

34

Tree: Splay Tree

Splay tree

B B O W @ & © @

Figure 4.55 Result of splaying the previous tree at node 5

35

Tree: Splay Tree

Splay tree

B ©» O Y A @ & @

Figure 4.56 Result of splaying the previous tree at node 6

36

Tree: Splay Tree

Splay tree

(2) 16 24)
O 19 18) 22 (26)
B ©» O O e & @ @

Figure 4.57 Result of splaying the previous tree at node 7

29

30

3D

32)

37

Tree: Splay Tree

Splay tree

(2) B & O W e & & @

Figure 4.58 Result of splaying the previous tree at node 8

38

Tree: Splay Tree

Splay tree
6°® | height = ? |

(2) B 6 W O 0 ¥ ©» @

Figure 4.59 Result of splaying the previous tree at node 9

39

Tree: Splay Tree

Splay tree: remove

Splay this
node (to root)

* Access node to be removed (now at root)

* Remove node leaving two subtreesT_L and T_R

* Access largestelementinT_L findMax(T_L) and
* Now at root splay this node

]

* MakeT_Rright child of root of TL

40

Tree: Splay Tree

Splay tree: remove

l Splay node 4 I @
: r —»
(9 @ P
@/ | =

ﬁf dMax(T_ L)
0 — ‘@4

Delet

@@ Make T_R asthe @

right child of root

https://www.geeksforgeeks.org/deletion-in-splay-tree/

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Splay tree
	Slide 4: Splay tree
	Slide 5: Three types of cases
	Slide 6: Splaying: zig-zag
	Slide 7: Splaying: zig-zag
	Slide 8: Splaying: zig-zag
	Slide 9: Splaying: zig-zig
	Slide 10: Splaying: zig-zig
	Slide 11: Splay tree
	Slide 12: Splay tree
	Slide 13: Splay tree
	Slide 14: Splay tree
	Slide 15: Splay tree
	Slide 16: Splay tree
	Slide 17: Splay tree
	Slide 18: Splay tree
	Slide 19: Splay tree
	Slide 20: Splay tree
	Slide 21: Splay tree
	Slide 22: Splay tree
	Slide 23: Splay tree
	Slide 24: Splay tree
	Slide 25: Splay tree
	Slide 26: Splay tree
	Slide 27: Splay tree
	Slide 28: Splay tree
	Slide 29: Splay tree
	Slide 30: Splay tree
	Slide 31: Splay tree
	Slide 32: Splay tree
	Slide 33: Splay tree
	Slide 34: Splay tree
	Slide 35: Splay tree
	Slide 36: Splay tree
	Slide 37: Splay tree
	Slide 38: Splay tree
	Slide 39: Splay tree
	Slide 40: Splay tree: remove
	Slide 41: Splay tree: remove

