
CPTS 223 Advanced Data
Structure C/C++

Tree: AVL Tree

1

Overview
Tree: AVL Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

2

Balanced BSTs
Tree: AVL Tree

WSU

• AVL (Adelson-Velskii and Landis) trees
• Height of left and right subtrees at every node in BST differ by at most 1

• Balance forcefully maintained for every update (via rotations)

• BST depth always O(lg(n))

3

AVL trees
Tree: AVL Tree

WSU

• Definition: every AVL tree is a BST such that
• For every node in the BST, the heights of its left and right subtrees differ by at

most 1

• Worst-case Height of AVL tree is Θ(lg(n))
• Precisely, 1.44 log2(n+2) – 1.328

• Intuitively, it enforces that a tree is “sufficiently” populated before
height is grown
• Minimum #nodes S(h) in an AVL tree of height h :

• S(h) = S(h-1) + S(h-2) + 1 (Similar to Fibonacci recurrence)

• = Θ(2^h)

4

AVL trees
Tree: AVL Tree

WSU

• Which of these is a valid AVL tree?

5

5

2 8

71 4

3

7

2 8

5

1 4

3

AVL trees
Tree: AVL Tree

WSU

• Which of these is a valid AVL tree?

6

5

2 8

71 4

3

7

2 8

5

1 4

3

h=2

h=1

h=2

h=0

Maintaining balance condition
Tree: AVL Tree

WSU

• If we can maintain balance condition
• then insert, remove, find are O(lg(n))

• Why?
• h = O(lg(n))

• Maintain height h(t) at each node t
• h(t) := max{h(t->left), h(t->right)} + 1

• h(empty tree) = -1

• Which operations can violate balance condition?
• Find(X), insert(X), delete(X), etc.?

7

AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation

8

5

2 8

71 4

3

Insert(6)

AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation

9

5

2 8

71 4

3 6

5

2 8

71 4

3

Insert(6)

AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation

10

5

2 8

71 4

3 6

5

2 8

71 4

3

Insert(6)

h=1

AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation

11

5

2 8

71 4

3 6

5

2 8

71 4

3

Insert(6)

NULL

h=-1

h=1

AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation

12

5

2 8

71 4

3 6

5

2 8

71 4

3

Insert(6)

rotation

AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation

13

5

2 8

71 4

3 6

5

2 8

71 4

3

5

2 7

61 4

3

8

Insert(6)

AVL insert
Tree: AVL Tree

WSU

• Only nodes along path to insertion could have their balance altered

• Follow the path back to root, looking for violations

• Fix the deepest node with violation using single or double rotations

14

Fix at the
violated nodeCheck for

violations

Q: Why is fixing the deepest
node with violation sufficient?

AVL insert: how to fix?
Tree: AVL Tree

WSU

• Assume the violation after insert is at node k

• Four cases leading to violation:
• CASE 1: Insert into the left subtree of the left child of k

• CASE 2: Insert into the right subtree of the left child of k

• CASE 3: Insert into the left subtree of the right child of k

• CASE 4: Insert into the right subtree of the right child of k

• Cases 1 and 4 handled by “single rotation”

• Cases 2 and 3 handled by “double rotation”

15

AVL insert: how to fix?
Tree: AVL Tree

WSU

• A general approach
• Locate the deepest node with the height imbalance

• Locate which part of its subtree caused the imbalance

• This will be same as locating the subtree site of insertion

• Identify the case (1 or 2 or 3 or 4)

• Do the corresponding rotation.

16

Identify cases for AVL insert
Tree: AVL Tree

WSU

17

k

Left child

Right child

Case 1 Case 2 Case 3 Case 4

Let this be the deepest node with the
violation (i.e, imbalance)

(i.e., nearest to the last insertion site)

Insert a
data into:

Left
subtree

Left
subtree

Right
subtree

Right
subtree

Identify cases for AVL insert
Tree: AVL Tree

WSU

18

k

Left child

Right child

Case 1 Case 2 Case 3 Case 4

Let this be the deepest node with the
violation (i.e, imbalance)

(i.e., nearest to the last insertion site)

Insert a
data into:

Left
subtree

Left
subtree

Right
subtree

Right
subtree

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right

19

Insert a
data into:

height diff=2

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right

20

Insert a
data into:

height diff=2

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right

21

Insert a
data into:

height diff=2

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right

22

Insert a
data into:

height diff=2 height diff=1

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right

23

Insert a
data into:

height diff=2 height diff=1

• BST order?
• AVL balance condition?

X < k_1 < Y < k_2 < Z

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1 example

24

5

2 8

71 4

3 6

5

2 8

71 4

3

5

2 7

61 4

3

8

Insert(6)

Identify cases for AVL insert
Tree: AVL Tree

WSU

25

k

Left child

Right child

Case 1 Case 2 Case 3 Case 4

Let this be the deepest node with the
violation (i.e, imbalance)

(i.e., nearest to the last insertion site)

Insert a
data into:

Left
subtree

Left
subtree

Right
subtree

Right
subtree

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 4: single rotation left

26

Insert a
data into:

height diff=2

height diff=1

• BST order?
• AVL balance condition?

X < k_1 < Y < k_2 < Z

AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 4 example

27

4

2 5

6

Insert(7)
4

2 5

6

7

4

2 6

5 7

Identify cases for AVL insert
Tree: AVL Tree

WSU

28

k

Left child

Right child

Case 1 Case 2 Case 3 Case 4

Let this be the deepest node with the
violation (i.e, imbalance)

(i.e., nearest to the last insertion site)

Insert a
data into:

Left
subtree

Left
subtree

Right
subtree

Right
subtree

AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2: single rotation fails

29

height diff=2

height diff=2

AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2: left-right double rotation

30

height diff=2

height diff=1

Can be implemented as
two successive rotations

• BST order?
• AVL balance condition?

A < k_1 < B < k_2
< C < k_3 < D

Insert a
data into:

AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2 example

31

5

2 6

1

Insert(4)

3

5

2 6

1

4

3

5

2 6

1

4

3

AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2 example

32

5

3 6

2 4

1

3

2 5

1 4 6

5

2 6

1

4

3

Identify cases for AVL insert
Tree: AVL Tree

WSU

33

k

Left child

Right child

Case 1 Case 2 Case 3 Case 4

Let this be the deepest node with the
violation (i.e, imbalance)

(i.e., nearest to the last insertion site)

Insert a
data into:

Left
subtree

Left
subtree

Right
subtree

Right
subtree

AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 3: right-left double rotation

34

height diff=2

height diff=1

• BST order?
• AVL balance condition?

A < k_1 < B < k_2
< C < k_3 < D

Insert a
data into:

AVL insert (double rotation)
Tree: AVL Tree

WSU

35

10

7 15

5

2

8 13 23

11 14 18 25

17 21

Delete(2)

10

7 15

5 8 13 23

11 14 18 25

17 21

Which node should be fixed?

AVL insert (double rotation)
Tree: AVL Tree

WSU

36

10

7 15

5

2

8 13 23

11 14 18 25

17 21

Delete(2)

10

7 15

5 8 13 23

11 14 18 25

17 21

Which node should be fixed?

Root: fixed
by case 4

AVL deletion
Tree: AVL Tree

WSU

• Locate the deepest node with the height imbalance (along the
deletion path)

• Locate which part of its subtree caused the imbalance
• The child-node that has higher height leads to the imbalance

• Identify the case (1 or 2 or 3 or 4)

• Do the corresponding rotation

37

AVL remove: lazy deletion
Tree: AVL Tree

WSU

• Assume remove accomplished using lazy deletion
• Removed nodes only marked as deleted, but not actually removed from BST

until some cutoff is reached

• Unmarked when same object re-inserted

• Re-allocation time avoided

• Does not affect O(log2 N) height as long as deleted nodes are not in the
majority

• Does require additional memory per node

• Can accomplish remove without lazy deletion

38

AVL heights
Tree: AVL Tree

WSU

• Usually, how do we get the height of a node?

• DFS (Depth-first search) Tree traversal
• Complexity O(n): all descendants of this node

• AVL Tree insertion / deletion frequently uses “height”
• Locate the deepest node with the height imbalance

• Locate which part of its subtree caused the imbalance

• This is extremely slow

• Maintain the height value in each AVL node to avoid tree traversal
• Every time when an insertion/deletion finishes, update the height value of all

nodes on the path, from the leaf to root. Complexity O(h), h = lg(n)

• Insertion / deletion will use the height value of a node to perform Step 1 and 2
39

AVL tree implementation
Tree: AVL Tree

WSU

40

For each node

AVL tree implementation
Tree: AVL Tree

WSU

41

AVL tree implementation
Tree: AVL Tree

WSU

42

BST insert

AVL tree implementation
Tree: AVL Tree

WSU

43

AVL tree implementation
Tree: AVL Tree

WSU

44

AVL tree implementation
Tree: AVL Tree

WSU

45

Adjust height

AVL tree implementation
Tree: AVL Tree

WSU

46

AVL tree implementation
Tree: AVL Tree

WSU

47

rotateWithRightChild
is similar

AVL tree implementation
Tree: AVL Tree

WSU

48

AVL tree implementation
Tree: AVL Tree

WSU

49

#1: rotateWithRightChild

#1: rotateWithRightChild

AVL tree implementation
Tree: AVL Tree

WSU

50

#2: rotateWithLeftChild

#1: rotateWithLeftChild

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Balanced BSTs
	Slide 4: AVL trees
	Slide 5: AVL trees
	Slide 6: AVL trees
	Slide 7: Maintaining balance condition
	Slide 8: AVL insert
	Slide 9: AVL insert
	Slide 10: AVL insert
	Slide 11: AVL insert
	Slide 12: AVL insert
	Slide 13: AVL insert
	Slide 14: AVL insert
	Slide 15: AVL insert: how to fix?
	Slide 16: AVL insert: how to fix?
	Slide 17: Identify cases for AVL insert
	Slide 18: Identify cases for AVL insert
	Slide 19: AVL insert (single rotation)
	Slide 20: AVL insert (single rotation)
	Slide 21: AVL insert (single rotation)
	Slide 22: AVL insert (single rotation)
	Slide 23: AVL insert (single rotation)
	Slide 24: AVL insert (single rotation)
	Slide 25: Identify cases for AVL insert
	Slide 26: AVL insert (single rotation)
	Slide 27: AVL insert (single rotation)
	Slide 28: Identify cases for AVL insert
	Slide 29: AVL insert (double rotation)
	Slide 30: AVL insert (double rotation)
	Slide 31: AVL insert (double rotation)
	Slide 32: AVL insert (double rotation)
	Slide 33: Identify cases for AVL insert
	Slide 34: AVL insert (double rotation)
	Slide 35: AVL insert (double rotation)
	Slide 36: AVL insert (double rotation)
	Slide 37: AVL deletion
	Slide 38: AVL remove: lazy deletion
	Slide 39: AVL heights
	Slide 40: AVL tree implementation
	Slide 41: AVL tree implementation
	Slide 42: AVL tree implementation
	Slide 43: AVL tree implementation
	Slide 44: AVL tree implementation
	Slide 45: AVL tree implementation
	Slide 46: AVL tree implementation
	Slide 47: AVL tree implementation
	Slide 48: AVL tree implementation
	Slide 49: AVL tree implementation
	Slide 50: AVL tree implementation

