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Tree: AVL Tree
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Overview
Tree: AVL Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree
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Balanced BSTs
Tree: AVL Tree

WSU

• AVL (Adelson-Velskii and Landis) trees
• Height of left and right subtrees at every node in BST differ by at most 1

• Balance forcefully maintained for every update (via rotations)

• BST depth always O(lg(n))
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AVL trees
Tree: AVL Tree

WSU

• Definition: every AVL tree is a BST such that
• For every node in the BST, the heights of its left and right subtrees differ by at 

most 1

• Worst-case Height of AVL tree is Θ(lg(n))
• Precisely, 1.44 log2(n+2) – 1.328

• Intuitively, it enforces that a tree is  “sufficiently” populated before 
height is  grown
• Minimum #nodes S(h) in an AVL tree of height h :

• S(h) = S(h-1) + S(h-2) + 1                (Similar to Fibonacci recurrence)

• = Θ(2^h)
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AVL trees
Tree: AVL Tree

WSU

• Which of these is a valid AVL tree?
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AVL trees
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Maintaining balance condition
Tree: AVL Tree

WSU

• If we can maintain balance condition 
• then insert, remove, find are O(lg(n))

• Why?
• h = O(lg(n))

• Maintain height h(t) at each node t
• h(t) := max{h(t->left), h(t->right)} + 1

• h(empty tree) = -1

• Which operations can violate balance condition?
• Find(X), insert(X), delete(X), etc.?
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AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation
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AVL insert
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• Insert can violate AVL balance condition

• Can be fixed by a rotation
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AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation
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AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation
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AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation
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AVL insert
Tree: AVL Tree

WSU

• Insert can violate AVL balance condition

• Can be fixed by a rotation
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AVL insert
Tree: AVL Tree

WSU

• Only nodes along path to insertion could have their balance altered

• Follow the path back to root, looking for violations

• Fix the deepest node with violation using single or double rotations
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Fix at the 
violated nodeCheck for 

violations

Q: Why is fixing the deepest 
node with violation sufficient?



AVL insert: how to fix?
Tree: AVL Tree

WSU

• Assume the violation after insert is at node k

• Four cases leading to violation:
• CASE 1: Insert into the left subtree of the left child of k

• CASE 2: Insert into the right subtree of the left child of k

• CASE 3: Insert into the left subtree of the right child of k

• CASE 4: Insert into the right subtree of the right child of k

• Cases 1 and 4 handled by “single rotation”

• Cases 2 and 3 handled by “double rotation”
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AVL insert: how to fix?
Tree: AVL Tree

WSU

• A general approach
• Locate the deepest node with the height imbalance

• Locate which part of its subtree caused the imbalance

• This will be same as locating the subtree site of insertion

• Identify the case (1 or 2 or 3 or 4)

• Do the corresponding rotation.
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Identify cases for AVL insert
Tree: AVL Tree

WSU
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Identify cases for AVL insert
Tree: AVL Tree

WSU
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right
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AVL insert (single rotation)
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• Case 1: single rotation right
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1: single rotation right
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 1 example
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Identify cases for AVL insert
Tree: AVL Tree

WSU
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 4: single rotation left
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AVL insert (single rotation)
Tree: AVL Tree

WSU

• Case 4 example
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Identify cases for AVL insert
Tree: AVL Tree

WSU
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AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2: single rotation fails
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AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2: left-right double rotation
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AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2 example
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AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 2 example
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Identify cases for AVL insert
Tree: AVL Tree

WSU
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AVL insert (double rotation)
Tree: AVL Tree

WSU

• Case 3: right-left double rotation
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AVL insert (double rotation)
Tree: AVL Tree

WSU
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AVL insert (double rotation)
Tree: AVL Tree

WSU
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AVL deletion
Tree: AVL Tree

WSU

• Locate the deepest node with the height imbalance (along the 
deletion path)

• Locate which part of its subtree  caused the imbalance
• The child-node that has higher height leads to the imbalance

• Identify the case (1 or 2 or 3 or 4)

• Do the corresponding rotation
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AVL remove: lazy deletion
Tree: AVL Tree

WSU

• Assume remove accomplished using lazy deletion
• Removed nodes only marked as deleted, but not actually removed from BST 

until some cutoff is reached

• Unmarked when same object re-inserted

• Re-allocation time avoided

• Does not affect O(log2 N) height as long as deleted nodes are not in the 
majority

• Does require additional memory per node

• Can accomplish remove without lazy deletion
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AVL heights
Tree: AVL Tree

WSU

• Usually, how do we get the height of a node?

• DFS (Depth-first search) Tree traversal
• Complexity O(n): all descendants of this node

• AVL Tree insertion / deletion frequently uses “height”
• Locate the deepest node with the height imbalance

• Locate which part of its subtree  caused the imbalance

• This is extremely slow

• Maintain the height value in each AVL node to avoid tree traversal
• Every time when an insertion/deletion finishes, update the height value of all 

nodes on the path, from the leaf to root. Complexity O(h), h = lg(n)

• Insertion / deletion will use the height value of a node to perform Step 1 and 2
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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rotateWithRightChild 
is similar



AVL tree implementation
Tree: AVL Tree

WSU
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AVL tree implementation
Tree: AVL Tree

WSU
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#1: rotateWithRightChild
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AVL tree implementation
Tree: AVL Tree

WSU
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#2: rotateWithLeftChild

#1: rotateWithLeftChild
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