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Overview
Tree: Binary Search Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree
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H I J K L M N

P QP is a descendant of A

A is an ancestor of P G is parent of N 
and child of A

M is child of F and 
grandchild of A
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root

T1 T2 T3 T4 T10…… 

• A generic tree:



Basic definitions
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• A tree T is a set of nodes that form a directed acyclic graph (DAG) such 
that:
• Each non-empty tree has a root node and zero or more sub-trees T1, …, Tk

• Each sub-tree is a tree

• An internal node is connected to its children by a directed edge

• Each node in a tree has only one parent
• Except the root, which has no parent
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Recursive definition



Basic definitions
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• Internal node: nodes with at least one child

• Leaf node: nodes with no children

• Siblings: nodes with the same parent

• A path from node n_1 to n_k is a sequence of nodes n_1, n_2, …, n_k  
such that n_i is the parent of n_{i+1} for 1 ≤ i < k
• The length of a path is the number of edges on the path (i.e., k-1)

• Each node has a path of length 0 to itself

• There is exactly one path from the root to each node in a tree

• Nodes n_i, …, n_k are descendants of n_i and ancestors of n_k

• Nodes n_{i+1}, …, n_k are proper descendants of n_i

• Nodes n_i, …,n_{k-1} are proper ancestors of n_k
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Nodes → 
either a leaf or an 
internal node
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H I J K L M N

P Q

B, C, D, E, F, G are siblings
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K, L, M are siblings
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B, C, H, I, P, Q, K, L, 
M, N are leaves
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P Q
(1) The path from A to Q is 
A – E – J – Q (with length 3) 
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A

B C D E F G

H I J K L M N

P Q (2) A, E, J are proper ancestors of Q
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H I J K L M N

P Q (3) E, J, Q, I, P are proper descendants of A



Basic definitions
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• The depth of a node n_i is the length of the  path from the root to n_i
• The root node has a depth of 0

• The depth of a tree == the depth of its deepest leaf

• The height of a node n_i is the length of the longest path under n_i’s 
subtree
• All leaves have a height of 0

• height of tree = height of root = depth  of tree
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Height and depth
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A

B C D E F G

H I J K L M N

P Q

e.g., height(E)=2, height(L)=01. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?
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A

B C D E F G

H I J K L M N

P Q

= 3 (height of longest path from root)

1. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?
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P Q

e.g., depth(E)=1, depth(L)=2

1. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?



Height and depth
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A

B C D E F G

H I J K L M N

P Q

= 3 (length of the path to the deepest node)

1. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?



Implementation of trees
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• Solution 1: vector of children

• Solution 2: list of children
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Struct TreeNode {

  Object element;

  vector<TreeNode> children;

 }

Struct TreeNode {

  Object element;

  list<TreeNode> children;

 }

Direct access to children[i]
However:
  need to know max allowed
  children in advance & more space

Number of children can be 
dynamically determined
However:
  more time to access children



Implementation of trees
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• Solution 3: left-child, right-sibling
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Struct TreeNode {

  Object element;

  TreeNode *firstChild;  

  TreeNode *nextSibling;

}

Guarantees 2 pointers per node 
(independent of #children)
However: 
  Access time proportional to #children

A

B C D E F G

H I J K L M N

P Q



Implementation of trees
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• Solution 3: left-child, right-sibling

• Which is the best solution?
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Struct TreeNode {

  Object element;

  TreeNode *firstChild;  

  TreeNode *nextSibling;

}

Guarantees 2 pointers per node 
(independent of #children)
However: 
  Access time proportional to #children



Implementation of trees
Tree: Binary Search Tree
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• Solution 3: left-child, right-sibling

• Which is the best solution?

• Which is the best solution for searching tasks?
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Struct TreeNode {

  Object element;

  TreeNode *firstChild;  

  TreeNode *nextSibling;

}

Guarantees 2 pointers per node 
(independent of #children)
However: 
  Access time proportional to #children



Binary trees (two-way trees)
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• A binary tree is a tree where each node has no more than two children

• If a node is missing one or both children, then that child pointer is 
NULL
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struct BinaryTreeNode

{

  Object element;

  BinaryTreeNode *leftChild;

  BinaryTreeNode *rightChild;

}

root

T1 T2



Example: expression trees
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• Store expressions in a binary tree
• Leaves of tree are operands (e.g., constants, variables)

• Other internal nodes are unary or binary operators

• Used by compilers to parse and evaluate expressions
• Arithmetic, logic, etc.

• e.g., (a + b * c)+((d * e + f) * g):

23

+

+ *

a *

b c

g+

f*

ed



Example: expression trees
Tree: Binary Search Tree

WSU

24

Compiler 

parse      →      optimize      →      evaluatecode →

tree tree’



Example: expression trees
Tree: Binary Search Tree
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• Evaluate expression
• Recursively evaluate left and right subtrees

• Apply operator at root node to results from  subtrees

• DFS (depth-first search) traversals (recursive definitions)
• Same evaluation result, different expression notations

• Post-order: left, right, root

• Pre-order: root, left, right

• In-order: left, root, right
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Traversals
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• Pre-order: root - left - right

• Post-order: left - right - root

• In-order: left - root - right
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Traversals
Tree: Binary Search Tree
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• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g
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• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g

28

+

+ *

a *

b c

g+

f*

ed



Traversals
Tree: Binary Search Tree

WSU

• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g
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Traversals
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• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g
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Traversals
Tree: Binary Search Tree
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• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g
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Example: expression trees
Tree: Binary Search Tree
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• Constructing an expression tree from postfix notation
• Use a stack of pointers to trees

• Read postfix expression left to right

• If operand, then push on stack

• If operator, then:

• Create a BinaryTreeNode with operator as the element

• Pop top two items off stack

• Insert these items as left and right child of new node

• Push pointer to node on the stack

• End of the expression? 1 pointer on stack, -> root

32



Example: expression trees
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a b
+ c d

a b

+

a b

e

c+

a b

+
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+

+
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d e

+

*

Target: a b + c d e + * * with stack
top top top

top top top



Binary search trees (BSTs)
Tree: Binary Search Tree

WSU

• For any node n, items in left subtree of n
• ≤ item in node n

• ≤ items in right subtree of n

• Which one is not a BST?
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Searching in BSTs
Tree: Binary Search Tree
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• Typically assume no duplicate elements

• If duplicates:
• then store counts in nodes, or 

• each node has a list of objects
35

Contains(T, x) {

  if (T == NULL)

    then return NULL

  if (T->element == x)  

    then return T

  if (x < T->element)

    then return Contains(T->leftChild, x)  

  else return Contains(T->rightChild, x)

}



Searching in BSTs
Tree: Binary Search Tree
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• Time to search using a BST with n nodes is O(?)
• For a BST of height h, it is O(h)

• What is the value of h?

• Worst-case: h=O(n)

• Balanced tree: h=O(lg(n))

36
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Searching in BSTs
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• Finding the minimum element
• Smallest element in left subtree

• Complexity?
• O(h)

37

findMin(T) {

if (T == NULL)

  then return NULL

if (T->leftChild == NULL)

  then return T

else return findMin(T->leftChild)

}
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6
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Searching in BSTs
Tree: Binary Search Tree

WSU

• Finding the minimum element
• Smallest element in left subtree

• Complexity?
• O(h)
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findMax(T) {

  if (T == NULL)

    then return NULL

  if (T->rightChild == NULL)

    then return T

  else return findMax(T->rightChild)

}
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6

3

2

1 5



Printing BSTs
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• In-order traversal ==> sorted

• Complexity?
• Θ(n)
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PrintTree(T) {

  if (T == NULL)

    then return

  PrintTree(T->leftChild)  

  cout << T->element  

  PrintTree(T->rightChild)

}

4

6

3

2

1 5

1 2 3 4 5 6



Inserting into BSTs
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• e.g., insert 5
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Inserting into BSTs
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• Search for element until reach end of tree

• Insert new element there

41

Insert(x, T) {

  if (T == NULL)

    then T = new Node(x)  

  else

    if (x < T->element)

      then if (T->leftChild == NULL)

             then T->leftChild = new Node(x)  

           else Insert(x, T->leftChild)

    else if (T->rightChild == NULL)

           then (T->rightChild = new Node(x)  

         else Insert(x, T->rightChild)

}



Removing from BSTs
Tree: Binary Search Tree
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• There are two cases for removal

• Case 1: Node to remove has 0 or 1 child
• Action: remove it and make appropriate adjustments to retain BST structure

• e.g., remove(4)
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3Node 3: New 
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Removing from BSTs
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• Case 2: Node to remove has 2 children
• Action:

• Replace node element with successor

• Remove the successor (case 1)

• e.g., remove(2)
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Removing from BSTs
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Remove(x, T) {

  if (T == NULL)

    then return

  if (x == T->element)

    then if ((T->left == NULL) && (T->right != NULL))  

           then T = T->right

         else if ((T->right == NULL) && (T->left != NULL))  

                then T = T->left

         else if ((T->right == NULL) && (T->left == NULL))  

                then T = NULL

         else {

           successor = findMin(T->right)  

           T->element = successor->element  

           Remove(T->element, T->right)

         }

  else if (x < T->element)

         then Remove(x, T->left) // recursively search

       else Remove(x, T->right) // recursively search

}

T: only right 
child

R

T



Removing from BSTs
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Remove(x, T) {

  if (T == NULL)

    then return

  if (x == T->element)

    then if ((T->left == NULL) && (T->right != NULL))  

           then T = T->right

         else if ((T->right == NULL) && (T->left != NULL))  

                then T = T->left

         else if ((T->right == NULL) && (T->left == NULL))  

                then T = NULL

         else {

           successor = findMin(T->right)  

           T->element = successor->element  

           Remove(T->element, T->right)

         }

  else if (x < T->element)

         then Remove(x, T->left) // recursively search

       else Remove(x, T->right) // recursively search

}

T: only left 
child

T

L



Removing from BSTs
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Remove(x, T) {

  if (T == NULL)

    then return

  if (x == T->element)

    then if ((T->left == NULL) && (T->right != NULL))  

           then T = T->right

         else if ((T->right == NULL) && (T->left != NULL))  

                then T = T->left

         else if ((T->right == NULL) && (T->left == NULL))  

                then T = NULL

         else {

           successor = findMin(T->right)  

           T->element = successor->element  

           Remove(T->element, T->right)

         }

  else if (x < T->element)

         then Remove(x, T->left) // recursively search

       else Remove(x, T->right) // recursively search

}

T: no child

T



Removing from BSTs
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Remove(x, T) {

  if (T == NULL)

    then return

  if (x == T->element)

    then if ((T->left == NULL) && (T->right != NULL))  

           then T = T->right

         else if ((T->right == NULL) && (T->left != NULL))  

                then T = T->left

         else if ((T->right == NULL) && (T->left == NULL))  

                then T = NULL

         else {

           successor = findMin(T->right)  

           T->element = successor->element  

           Remove(T->element, T->right)

         }

  else if (x < T->element)

         then Remove(x, T->left) // recursively search

       else Remove(x, T->right) // recursively search

}

T: left and 
right children

T

L R

(1) Replace node element 
with successor
(2) Remove the successor 
(case 1)
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48Figure 4.16 in textbook
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49Figure 4.16 in textbook
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50Figure 4.17 in textbook
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51Figure 4.18 in textbook
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52Figure 4.20 in textbook
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53Figure 4.21 in textbook
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54Figure 4.23 in textbook
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55Figure 4.23 in textbook
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56Figure 4.26 in textbook
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57Figure 4.27 in textbook



BST analysis
Tree: Binary Search Tree
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• printTree, makeEmpty and operator=
• Always Θ(n)

• insert, remove, contains, findMin,  findMax
• O(h), where h = height of tree

• Worst case: h = ?

• Best case: h = ?

• Average case: h = ?

58

Ω(lg(n))

O(n)

Θ(lg(n))



BST average-case analysis
Tree: Binary Search Tree
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• Define “internal path length” of a tree:
• = Sum of the depths of all nodes in the tree

• Implies: average depth of a tree = (internal path length)/n

• But there are lots of trees possible (one for  every unique insertion 
sequence)
• Compute average internal path length over all possible insertion sequences

• It has been proven that when a binary search tree is constructed through a 
random sequence of insertions, avg depth of a node lg(n) 

• n*lg(n)/n = Θ(lg(n))

59

Average case: h 

see textbook Section 4.3.6 and 7.7.5 
(Analysis of Quicksort, average-

case analysis)



Average internal path length
Tree: Binary Search Tree
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• Let D(n) = internal path length for a tree with n nodes

• = D(left) + D(right) + D(root)

• = D(i) + D(n-i-1) + n-1 

• If all tree sizes are equally likely,

• → average D(i) = average D(n-i-1) = 1/n σ𝑗=0
𝑛−1𝐷(𝑗)

• → average D(n) = 2/n σ𝑗=0
𝑛−1𝐷(𝑗) + n-1

•                                 → O(n lg(n))

60

D(n)

D(i) D(n-i+1)



Randomly Generated BST
Tree: Binary Search Tree
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Average node 
depth = 9.98 
log2 500 = 8.97

Randomly 
inserting 

500 nodes



Randomly Generated BST
Tree: Binary Search Tree
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Average node 
depth = 12.51

Randomly 
inserting/removing 

500^2 nodes
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