
CPTS 223 Advanced Data
Structure C/C++

Tree: Binary Search Tree

1

Overview
Tree: Binary Search Tree

WSU

• Tree data structure

• Binary search trees
• Support O(lg(n)) operations

• Balanced trees

• STL set and map classes

• B-trees for accessing secondary storage

• Applications of Tree

2

Trees
Tree: Binary Search Tree

WSU

3

A

B C D E F G

H I J K L M N

P QP is a descendant of A

A is an ancestor of P G is parent of N
and child of A

M is child of F and
grandchild of A

Trees
Tree: Binary Search Tree

WSU

4

root

T1 T2 T3 T4 T10……

• A generic tree:

Basic definitions
Tree: Binary Search Tree

WSU

• A tree T is a set of nodes that form a directed acyclic graph (DAG) such
that:
• Each non-empty tree has a root node and zero or more sub-trees T1, …, Tk

• Each sub-tree is a tree

• An internal node is connected to its children by a directed edge

• Each node in a tree has only one parent
• Except the root, which has no parent

5

Recursive definition

Basic definitions
Tree: Binary Search Tree

WSU

• Internal node: nodes with at least one child

• Leaf node: nodes with no children

• Siblings: nodes with the same parent

• A path from node n_1 to n_k is a sequence of nodes n_1, n_2, …, n_k
such that n_i is the parent of n_{i+1} for 1 ≤ i < k
• The length of a path is the number of edges on the path (i.e., k-1)

• Each node has a path of length 0 to itself

• There is exactly one path from the root to each node in a tree

• Nodes n_i, …, n_k are descendants of n_i and ancestors of n_k

• Nodes n_{i+1}, …, n_k are proper descendants of n_i

• Nodes n_i, …,n_{k-1} are proper ancestors of n_k
6

Nodes →
either a leaf or an
internal node

Node relationships
Tree: Binary Search Tree

WSU

7

A

B C D E F G

H I J K L M N

P Q

B, C, D, E, F, G are siblings

Node relationships
Tree: Binary Search Tree

WSU

8

A

B C D E F G

H I J K L M N

P Q

K, L, M are siblings

Node relationships
Tree: Binary Search Tree

WSU

9

A

B C D E F G

H I J K L M N

P Q

B, C, H, I, P, Q, K, L,
M, N are leaves

Node relationships
Tree: Binary Search Tree

WSU

10

A

B C D E F G

H I J K L M N

P Q
(1) The path from A to Q is
A – E – J – Q (with length 3)

Node relationships
Tree: Binary Search Tree

WSU

11

A

B C D E F G

H I J K L M N

P Q (2) A, E, J are proper ancestors of Q

Node relationships
Tree: Binary Search Tree

WSU

12

A

B C D E F G

H I J K L M N

P Q (3) E, J, Q, I, P are proper descendants of A

Basic definitions
Tree: Binary Search Tree

WSU

• The depth of a node n_i is the length of the path from the root to n_i
• The root node has a depth of 0

• The depth of a tree == the depth of its deepest leaf

• The height of a node n_i is the length of the longest path under n_i’s
subtree
• All leaves have a height of 0

• height of tree = height of root = depth of tree

13

Height and depth
Tree: Binary Search Tree

WSU

14

A

B C D E F G

H I J K L M N

P Q

e.g., height(E)=2, height(L)=01. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?

Height and depth
Tree: Binary Search Tree

WSU

15

A

B C D E F G

H I J K L M N

P Q

= 3 (height of longest path from root)

1. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?

Height and depth
Tree: Binary Search Tree

WSU

16

A

B C D E F G

H I J K L M N

P Q

e.g., depth(E)=1, depth(L)=2

1. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?

Height and depth
Tree: Binary Search Tree

WSU

17

A

B C D E F G

H I J K L M N

P Q

= 3 (length of the path to the deepest node)

1. Height of each node?
2. Height of the tree?
3. Depth of each node?
4. Depth of the tree?

Implementation of trees
Tree: Binary Search Tree

WSU

• Solution 1: vector of children

• Solution 2: list of children

18

Struct TreeNode {

 Object element;

 vector<TreeNode> children;

 }

Struct TreeNode {

 Object element;

 list<TreeNode> children;

 }

Direct access to children[i]
However:
 need to know max allowed
 children in advance & more space

Number of children can be
dynamically determined
However:
 more time to access children

Implementation of trees
Tree: Binary Search Tree

WSU

• Solution 3: left-child, right-sibling

19

Struct TreeNode {

 Object element;

 TreeNode *firstChild;

 TreeNode *nextSibling;

}

Guarantees 2 pointers per node
(independent of #children)
However:
 Access time proportional to #children

A

B C D E F G

H I J K L M N

P Q

Implementation of trees
Tree: Binary Search Tree

WSU

• Solution 3: left-child, right-sibling

• Which is the best solution?

20

Struct TreeNode {

 Object element;

 TreeNode *firstChild;

 TreeNode *nextSibling;

}

Guarantees 2 pointers per node
(independent of #children)
However:
 Access time proportional to #children

Implementation of trees
Tree: Binary Search Tree

WSU

• Solution 3: left-child, right-sibling

• Which is the best solution?

• Which is the best solution for searching tasks?

21

Struct TreeNode {

 Object element;

 TreeNode *firstChild;

 TreeNode *nextSibling;

}

Guarantees 2 pointers per node
(independent of #children)
However:
 Access time proportional to #children

Binary trees (two-way trees)
Tree: Binary Search Tree

WSU

• A binary tree is a tree where each node has no more than two children

• If a node is missing one or both children, then that child pointer is
NULL

22

struct BinaryTreeNode

{

 Object element;

 BinaryTreeNode *leftChild;

 BinaryTreeNode *rightChild;

}

root

T1 T2

Example: expression trees
Tree: Binary Search Tree

WSU

• Store expressions in a binary tree
• Leaves of tree are operands (e.g., constants, variables)

• Other internal nodes are unary or binary operators

• Used by compilers to parse and evaluate expressions
• Arithmetic, logic, etc.

• e.g., (a + b * c)+((d * e + f) * g):

23

+

+ *

a *

b c

g+

f*

ed

Example: expression trees
Tree: Binary Search Tree

WSU

24

Compiler

parse → optimize → evaluatecode →

tree tree’

Example: expression trees
Tree: Binary Search Tree

WSU

• Evaluate expression
• Recursively evaluate left and right subtrees

• Apply operator at root node to results from subtrees

• DFS (depth-first search) traversals (recursive definitions)
• Same evaluation result, different expression notations

• Post-order: left, right, root

• Pre-order: root, left, right

• In-order: left, root, right

25

Traversals
Tree: Binary Search Tree

WSU

• Pre-order: root - left - right

• Post-order: left - right - root

• In-order: left - root - right

26

+

+ *

a *

b c

g+

f*

ed

Traversals
Tree: Binary Search Tree

WSU

• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g

27

+

+ *

a *

b c

g+

f*

ed

Traversals
Tree: Binary Search Tree

WSU

• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g

28

+

+ *

a *

b c

g+

f*

ed

Traversals
Tree: Binary Search Tree

WSU

• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g

29

+

+ *

a *

b c

g+

f*

ed

Traversals
Tree: Binary Search Tree

WSU

• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g

30

+

+ *

a *

b c

g+

f*

ed

Traversals
Tree: Binary Search Tree

WSU

• Pre-order: + + a * b c * + * d e f g

• Post-order: a b c * + d e * f + g * +

• In-order: a + b * c + d * e + f * g

31

+

+ *

a *

b c

g+

f*

ed

Example: expression trees
Tree: Binary Search Tree

WSU

• Constructing an expression tree from postfix notation
• Use a stack of pointers to trees

• Read postfix expression left to right

• If operand, then push on stack

• If operator, then:

• Create a BinaryTreeNode with operator as the element

• Pop top two items off stack

• Insert these items as left and right child of new node

• Push pointer to node on the stack

• End of the expression? 1 pointer on stack, -> root

32

Example: expression trees
Tree: Binary Search Tree

WSU

33

a b
+ c d

a b

+

a b

e

c+

a b

+

d e

+

a b c +

d e

+

+

a b c +

d e

+

*

Target: a b + c d e + * * with stack
top top top

top top top

Binary search trees (BSTs)
Tree: Binary Search Tree

WSU

• For any node n, items in left subtree of n
• ≤ item in node n

• ≤ items in right subtree of n

• Which one is not a BST?

34

7

92

51

3

7

92

51

3 8

9

1

3

5

7

8

2

9

8

7

5

3

2

1

Searching in BSTs
Tree: Binary Search Tree

WSU

• Typically assume no duplicate elements

• If duplicates:
• then store counts in nodes, or

• each node has a list of objects
35

Contains(T, x) {

 if (T == NULL)

 then return NULL

 if (T->element == x)

 then return T

 if (x < T->element)

 then return Contains(T->leftChild, x)

 else return Contains(T->rightChild, x)

}

Searching in BSTs
Tree: Binary Search Tree

WSU

• Time to search using a BST with n nodes is O(?)
• For a BST of height h, it is O(h)

• What is the value of h?

• Worst-case: h=O(n)

• Balanced tree: h=O(lg(n))

36

1

2

3

4

5

6
4

6

3

2

1 5

Searching in BSTs
Tree: Binary Search Tree

WSU

• Finding the minimum element
• Smallest element in left subtree

• Complexity?
• O(h)

37

findMin(T) {

if (T == NULL)

 then return NULL

if (T->leftChild == NULL)

 then return T

else return findMin(T->leftChild)

}

4

6

3

2

1 5

Searching in BSTs
Tree: Binary Search Tree

WSU

• Finding the minimum element
• Smallest element in left subtree

• Complexity?
• O(h)

38

findMax(T) {

 if (T == NULL)

 then return NULL

 if (T->rightChild == NULL)

 then return T

 else return findMax(T->rightChild)

}

4

6

3

2

1 5

Printing BSTs
Tree: Binary Search Tree

WSU

• In-order traversal ==> sorted

• Complexity?
• Θ(n)

39

PrintTree(T) {

 if (T == NULL)

 then return

 PrintTree(T->leftChild)

 cout << T->element

 PrintTree(T->rightChild)

}

4

6

3

2

1 5

1 2 3 4 5 6

Inserting into BSTs
Tree: Binary Search Tree

WSU

• e.g., insert 5

40

6

8

3

2

1 7

6

8

3

2

1 7

5

Insert(5)

(1)
(2)

(3)

(4)

Inserting into BSTs
Tree: Binary Search Tree

WSU

• Search for element until reach end of tree

• Insert new element there

41

Insert(x, T) {

 if (T == NULL)

 then T = new Node(x)

 else

 if (x < T->element)

 then if (T->leftChild == NULL)

 then T->leftChild = new Node(x)

 else Insert(x, T->leftChild)

 else if (T->rightChild == NULL)

 then (T->rightChild = new Node(x)

 else Insert(x, T->rightChild)

}

Removing from BSTs
Tree: Binary Search Tree

WSU

• There are two cases for removal

• Case 1: Node to remove has 0 or 1 child
• Action: remove it and make appropriate adjustments to retain BST structure

• e.g., remove(4)

42

6

8

4

2

1

(1)
(2)

(3)

6

8

4

2

1

(2)

(3)

(1)

3Node 3: New
child of Node 2

Removing from BSTs
Tree: Binary Search Tree

WSU

• Case 2: Node to remove has 2 children
• Action:

• Replace node element with successor

• Remove the successor (case 1)

• e.g., remove(2)

43

6

8

5

2

1

(1)

(2)

Node 3:
replace Node 2 3

4

6

8

5

3

1

3

4

Node 4: new
child of Node 5

6

8

5

3

1

4

6

8

5

2

1

3

4

Initial:

Removing from BSTs
Tree: Binary Search Tree

WSU

44

Remove(x, T) {

 if (T == NULL)

 then return

 if (x == T->element)

 then if ((T->left == NULL) && (T->right != NULL))

 then T = T->right

 else if ((T->right == NULL) && (T->left != NULL))

 then T = T->left

 else if ((T->right == NULL) && (T->left == NULL))

 then T = NULL

 else {

 successor = findMin(T->right)

 T->element = successor->element

 Remove(T->element, T->right)

 }

 else if (x < T->element)

 then Remove(x, T->left) // recursively search

 else Remove(x, T->right) // recursively search

}

T: only right
child

R

T

Removing from BSTs
Tree: Binary Search Tree

WSU

45

Remove(x, T) {

 if (T == NULL)

 then return

 if (x == T->element)

 then if ((T->left == NULL) && (T->right != NULL))

 then T = T->right

 else if ((T->right == NULL) && (T->left != NULL))

 then T = T->left

 else if ((T->right == NULL) && (T->left == NULL))

 then T = NULL

 else {

 successor = findMin(T->right)

 T->element = successor->element

 Remove(T->element, T->right)

 }

 else if (x < T->element)

 then Remove(x, T->left) // recursively search

 else Remove(x, T->right) // recursively search

}

T: only left
child

T

L

Removing from BSTs
Tree: Binary Search Tree

WSU

46

Remove(x, T) {

 if (T == NULL)

 then return

 if (x == T->element)

 then if ((T->left == NULL) && (T->right != NULL))

 then T = T->right

 else if ((T->right == NULL) && (T->left != NULL))

 then T = T->left

 else if ((T->right == NULL) && (T->left == NULL))

 then T = NULL

 else {

 successor = findMin(T->right)

 T->element = successor->element

 Remove(T->element, T->right)

 }

 else if (x < T->element)

 then Remove(x, T->left) // recursively search

 else Remove(x, T->right) // recursively search

}

T: no child

T

Removing from BSTs
Tree: Binary Search Tree

WSU

47

Remove(x, T) {

 if (T == NULL)

 then return

 if (x == T->element)

 then if ((T->left == NULL) && (T->right != NULL))

 then T = T->right

 else if ((T->right == NULL) && (T->left != NULL))

 then T = T->left

 else if ((T->right == NULL) && (T->left == NULL))

 then T = NULL

 else {

 successor = findMin(T->right)

 T->element = successor->element

 Remove(T->element, T->right)

 }

 else if (x < T->element)

 then Remove(x, T->left) // recursively search

 else Remove(x, T->right) // recursively search

}

T: left and
right children

T

L R

(1) Replace node element
with successor
(2) Remove the successor
(case 1)

Implementation of BSTs
Tree: Binary Search Tree

WSU

48Figure 4.16 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

49Figure 4.16 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

50Figure 4.17 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

51Figure 4.18 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

52Figure 4.20 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

53Figure 4.21 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

54Figure 4.23 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

55Figure 4.23 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

56Figure 4.26 in textbook

Implementation of BSTs
Tree: Binary Search Tree

WSU

57Figure 4.27 in textbook

BST analysis
Tree: Binary Search Tree

WSU

• printTree, makeEmpty and operator=
• Always Θ(n)

• insert, remove, contains, findMin, findMax
• O(h), where h = height of tree

• Worst case: h = ?

• Best case: h = ?

• Average case: h = ?

58

Ω(lg(n))

O(n)

Θ(lg(n))

BST average-case analysis
Tree: Binary Search Tree

WSU

• Define “internal path length” of a tree:
• = Sum of the depths of all nodes in the tree

• Implies: average depth of a tree = (internal path length)/n

• But there are lots of trees possible (one for every unique insertion
sequence)
• Compute average internal path length over all possible insertion sequences

• It has been proven that when a binary search tree is constructed through a
random sequence of insertions, avg depth of a node lg(n)

• n*lg(n)/n = Θ(lg(n))

59

Average case: h

see textbook Section 4.3.6 and 7.7.5
(Analysis of Quicksort, average-

case analysis)

Average internal path length
Tree: Binary Search Tree

WSU

• Let D(n) = internal path length for a tree with n nodes

• = D(left) + D(right) + D(root)

• = D(i) + D(n-i-1) + n-1

• If all tree sizes are equally likely,

• → average D(i) = average D(n-i-1) = 1/n σ𝑗=0
𝑛−1𝐷(𝑗)

• → average D(n) = 2/n σ𝑗=0
𝑛−1𝐷(𝑗) + n-1

• → O(n lg(n))

60

D(n)

D(i) D(n-i+1)

Randomly Generated BST
Tree: Binary Search Tree

WSU

61

Average node
depth = 9.98
log2 500 = 8.97

Randomly
inserting

500 nodes

Randomly Generated BST
Tree: Binary Search Tree

WSU

62

Average node
depth = 12.51

Randomly
inserting/removing

500^2 nodes

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Trees
	Slide 4: Trees
	Slide 5: Basic definitions
	Slide 6: Basic definitions
	Slide 7: Node relationships
	Slide 8: Node relationships
	Slide 9: Node relationships
	Slide 10: Node relationships
	Slide 11: Node relationships
	Slide 12: Node relationships
	Slide 13: Basic definitions
	Slide 14: Height and depth
	Slide 15: Height and depth
	Slide 16: Height and depth
	Slide 17: Height and depth
	Slide 18: Implementation of trees
	Slide 19: Implementation of trees
	Slide 20: Implementation of trees
	Slide 21: Implementation of trees
	Slide 22: Binary trees (two-way trees)
	Slide 23: Example: expression trees
	Slide 24: Example: expression trees
	Slide 25: Example: expression trees
	Slide 26: Traversals
	Slide 27: Traversals
	Slide 28: Traversals
	Slide 29: Traversals
	Slide 30: Traversals
	Slide 31: Traversals
	Slide 32: Example: expression trees
	Slide 33: Example: expression trees
	Slide 34: Binary search trees (BSTs)
	Slide 35: Searching in BSTs
	Slide 36: Searching in BSTs
	Slide 37: Searching in BSTs
	Slide 38: Searching in BSTs
	Slide 39: Printing BSTs
	Slide 40: Inserting into BSTs
	Slide 41: Inserting into BSTs
	Slide 42: Removing from BSTs
	Slide 43: Removing from BSTs
	Slide 44: Removing from BSTs
	Slide 45: Removing from BSTs
	Slide 46: Removing from BSTs
	Slide 47: Removing from BSTs
	Slide 48: Implementation of BSTs
	Slide 49: Implementation of BSTs
	Slide 50: Implementation of BSTs
	Slide 51: Implementation of BSTs
	Slide 52: Implementation of BSTs
	Slide 53: Implementation of BSTs
	Slide 54: Implementation of BSTs
	Slide 55: Implementation of BSTs
	Slide 56: Implementation of BSTs
	Slide 57: Implementation of BSTs
	Slide 58: BST analysis
	Slide 59: BST average-case analysis
	Slide 60: Average internal path length
	Slide 61: Randomly Generated BST
	Slide 62: Randomly Generated BST

