
CPTS 223 Advanced Data
Structure C/C++

Algorithm Analysis

1

How to compare algorithms?
Algorithm Analysis

WSU

• Compare time requirements
• How much time will it take to execute the algorithm?

• Compare space requirements
• How much extra space is required for this algorithm to execute?

• Compare algorithms on some benchmarks?
• An algorithm might run faster on one machine versus another

• e.g., AMD vs Intel; AMD vs NVIDIA; Xbox vs PS vs Switch; Windows vs Mac; etc.)

• The selected inputs for a given run of the algorithm might not be a
representative sample

• It takes a lot of time to maintain a set of benchmarks

2

How to compare algorithms?
Algorithm Analysis

WSU

3

1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

Image credit: https://gamersnexus.net/gpus/nvidia-geforce-rtx-4070-super-review-benchmarks-vs-rtx-4070-rx-7800-xt-more

https://gamersnexus.net/gpus/nvidia-geforce-rtx-4070-super-review-benchmarks-vs-rtx-4070-rx-7800-xt-more

How to compare algorithms?
Algorithm Analysis

WSU

4

2K RTX 4090 7800XT

AVG 122 84.6

↓ 1% 56.8 49.9

↓ 0.1% 37 35

Image credit: https://gamersnexus.net/gpus/nvidia-geforce-rtx-4070-super-review-benchmarks-vs-rtx-4070-rx-7800-xt-more

https://gamersnexus.net/gpus/nvidia-geforce-rtx-4070-super-review-benchmarks-vs-rtx-4070-rx-7800-xt-more

How to compare algorithms?
Algorithm Analysis

WSU

5

2K RTX 4090 7800XT

AVG 122 84.6

↓ 1% 56.8 49.9

↓ 0.1% 37 35

1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

An easier
algorithm?

A harder
algorithm?

Larger fps*? Smaller fps?

*Fps: frames per second

How to compare algorithms?
Algorithm Analysis

WSU

6

2K RTX 4090 7800XT

AVG 122 84.6

↓ 1% 56.8 49.9

↓ 0.1% 37 35

1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

An easier
algorithm?

A harder
algorithm?

Larger fps*? Smaller fps?

*Fps: frames per second

How to compare algorithms?
Algorithm Analysis

WSU

7

2K RTX 4090 7800XT

AVG 122 84.6

↓ 1% 56.8 49.9

↓ 0.1% 37 35

1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

An easier
algorithm?

A harder
algorithm?

Larger fps*? Smaller fps?

*Fps: frames per second

How to compare algorithms?
Algorithm Analysis

WSU

8

2K RTX 4090 7800XT

AVG 122 84.6

↓ 1% 56.8 49.9

↓ 0.1% 37 35

1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

An easier
algorithm?

A harder
algorithm?

Larger fps*? Smaller fps?

*Fps: frames per second

Which benchmark
we should use?

Benchmarks can be sensitive
Algorithm Analysis

WSU

• Given the list {3, 9, 1, 2, 3, 5} as input

• Find(X): return the index of X

• We expect Find(3) to execute faster than Find(5)
• Which is more representative of this input list, Find(3) or Find(5)?

• How is our benchmark affected if we decide to use different lists?

• e.g. {1, 2, 3, 3, 3, 4, 4, 4, 5, 9}

• Benchmarks are great for telling us how an algorithm will execute
under a given set of circumstances

• but we ideally want something more generalizable

9

What is algorithm analysis?
Algorithm Analysis

WSU

• A mathematical technique for estimating the rate at which execution
time grows relative to the size of its input parameters

• A formal name: asymptotic analysis

• Asymptotic analysis is a method of estimation that groups algorithms
based on their growth rate

• Asymptotic analysis is unable to tell us for sure how one algorithm will
perform exactly in absolute timed execution relative to another

• but it does give us some good hints

10

Is there non-asymptotic analysis?

What is algorithm analysis?
Algorithm Analysis

WSU

11

Kawaguchi, Kenji, and Haihao Lu. "Ordered sgd: A new stochastic optimization

framework for empirical risk minimization." In International Conference on Artificial
Intelligence and Statistics, pp. 669-679. PMLR, 2020. https://arxiv.org/abs/1907.04371

• Asymptotic analysis result: an example in AI/ML

Asymptotic analysis:
Problem scale approaches
to infinitely large:

n→\infty

https://arxiv.org/abs/1907.04371

What is algorithm analysis?
Algorithm Analysis

WSU

12

• Asymptotic analysis result: an example in AI/ML

Yan, Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. "Optimal epoch stochastic gradient descent ascent methods for min-max
optimization." Advances in Neural Information Processing Systems 33 (2020): 5789-5800. https://arxiv.org/abs/2002.05309

Asymptotic analysis:
ignore dependencies
other than 𝜖, 𝑛

https://arxiv.org/abs/2002.05309

What is algorithm analysis?
Algorithm Analysis

WSU

13

• Non-asymptotic analysis result: an example in AI/ML

Yan, Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. "Optimal epoch stochastic gradient descent ascent methods for min-max
optimization." Advances in Neural Information Processing Systems 33 (2020): 5789-5800. https://arxiv.org/abs/2002.05309

(1) Not necessarily infinitely large scale
(2) Not necessarily hide constants

https://arxiv.org/abs/2002.05309

Worst-case growth rate
Algorithm Analysis

WSU

• It is great to have a positive disposition, but as scientists and
engineers, we need to know worst-case behavior so that we can plan
accordingly (Why?)

• Worst-case analysis is called "Big O" (pronounced "Big Oh") analysis

• Big-O analysis categorizes algorithms based on their growth rate

14

Algorithm complexity
Algorithm Analysis

WSU

• T(n) is time to run given an input size of n elements

• T(n) = O(f(n)): exist [c, n_o] such that T(n) <= cf(n) when n >= n_0
• e.g., T(n) <= 2.45 n^2, where f(n)=n^2

• T(n) = Ω(g(n)) when +[c, n_o] such that T(n) >= cg(n) when n >= n_0
• e.g., T(n) >= 1.03 n^2, where g(n)=n^2

• T(n) = Θ(h(n)) if and only if T(n) = O(h(n)) and T(n) = Ω(h(n))
• e.g., 1.03 n^2 <= T(n) <= 2.45 n^2, where h(n)=n^2

15

Bounds
Algorithm Analysis

WSU

• O(f(n)) is an UPPER bound of T(n) -- “Worst case can be no more than”
T(n) <= cf(n)

• Ω(g(n)) is a LOWER bound of T(n) -- “Best case can be no faster than”
T(n) >= cg(n)

• Only the order of the algorithm

• No details, e.g., constants (asymptotic analysis)

• T(n) = Θ(g(n)) is when O(g(n)) = Ω(g(n)) -- “It must be exactly”

• You will find Theta (Θ) also used as an average case

16

What is T(n)?
Algorithm Analysis

WSU

• T(n) is the time for a function to run

• It is more specific than O(n), since O(n) is only of the order:

• T(n) = n^2 + n+1

• O(n) = n^2

17

Big-O V.S. wall-clock time
Algorithm Analysis

WSU

18

Running times of several algorithms for maximum subsequence sum (in seconds)

How to compare algorithms?
Algorithm Analysis

WSU

19

O(1): constant complexity
Algorithm Analysis

WSU

20

• Also called constant time operations

• Execute in a certain amount of time

• Examples include:
• my_array[50]

• int my_int = 3;

• sum = my_int + 5;

• product = my_int * 50;

• int foo = new int;

• if(my_int == 3)

Big-O: worst-case analysis
Algorithm Analysis

WSU

• In Big-O analysis, we are interested the maximum number of
operations required to complete an algorithm.

• How many operations are required to execute the following code?

21

if(answer == “n”)

{

 cout << "Thanks for playing!" << endl;

}

For any O(X) where:
 X = number of constant time operation.
If there exists a constant k such that k*1 >= X, we reduce to O(1)
Therefore, O(3) = O(1)

O(1)

O(2)
O(3)

What about O(100),
O(1,000), O(10,000)?

Big-O analysis: inaccurate
Algorithm Analysis

WSU

• What are their Big-Os?

22

Segment #1:

 int i = 0;

Segment #2:

 cout << "Hello";

 cout << "Hello";

 cout << "Hello";

Big-O analysis: growth rate
Algorithm Analysis

WSU

• Going back to our list: {3, 9, 1, 2, 3, 5}

• Big-O analysis: always find the last (worst-case)

• Performing a Find(5) is directly affected by the size of the list

• Which Find(5) is faster?
• {3, 9, 1, 2, 3, 5}

• {3, 9, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5}

• {3, 9, 1, 2, 3, 1, 1, 1, 1, 1, …, 1, 1, 1, 1, 1, 5}

23

10000 items

How many operations in Find()?
Algorithm Analysis

WSU

• A: It depends

• Q: Depends on what?

• A: It depends on the number of items in our list

• Q: How do we represent a list whose size can vary.

• A: With a variable!

24

Time complexity of Find()
Algorithm Analysis

WSU

• n: the number of elements in the list.

• n determines the number of operations to be executed.

• This relationship (n v.s. # of operations) is linear.

• The growth rate (i.e. Big-O) is also linear.

• We denote a linear relationship with the variable n.
• → O(n)

25

Complexity for loops
Algorithm Analysis

WSU

• FOR loops:
• for(int i = 0; i < num_items; i++);

• WHILE loops:
• while(keep_going == 'y');

26

O(n) typically

Nested loops
Algorithm Analysis

WSU

• for(int i = 0; i < num_items; i++) {
 for(int j = 0; j < num_items; j++) {
 swap(items[i], items[j])
 }
}

• In this case, we multiply the effect that num_items has on the growth
rate, yielding O(n^2)

27

Unrelated loops
Algorithm Analysis

WSU

• O(n + n) or O(2n) → simplify to O(n)

28

for(int i = 0; i < num_items; i++) {

 cout << "hello";

}

for(int j = 0; j < num_items; j++) {

 cout << "goodbye";

}

Reduction of non-constant time
Algorithm Analysis

WSU

• In Big-O analysis, we always drop coefficients:
• O(2n) → O(n)

• O(40n) → O(n)

• O(1000000n) → O(n)

• This is because Big-O cares about placing algorithms into
performance groups, not absolute T(n) calculations

29

Why dropping constants?
Algorithm Analysis

WSU

• Adopt the convention that there are no particular units of time

• Only the dominating factor matters for large n values:
• 1000 n v.s. n^2

• 1000 n + 1,000,000 v.s. n^2

• n^3 v.s. n^2 + 30,000

• n^3 v.s. n^3 + n^2

• Lower-order terms can generally be ignored for Big-O analysis, and
constants thrown away if there is a higher order factor
• We only care about the growth rate over large n values for Big-O analysis

• There is plenty of work in the small n space too – example is for n <= 10 in
sorting 30

Asymptotic analysis

How to compare algorithms?
Algorithm Analysis

WSU

31

Function Name

c Constant

log(n) Logarithmic

log^2(n) Log-squared

n Linear

n log(n) (Will see this in sorting *a lot*)

n^2 Quadratic

n^3 Cubic

2^n Exponential

Time complexity: example #1
Algorithm Analysis

WSU

32

public static int sum(int n) {

 int partialSum;

 partialSum = 0;

 for(int i = 1; i <= n; i++)

 partialSum += i * i * i;

 return partialSum;

}

• σ𝑖=1
𝑛 𝑖3

• Time complexity?

Time complexity: example #1
Algorithm Analysis

WSU

33

public static int sum(int n) {

 int partialSum;

 partialSum = 0;

 for(int i = 1; i <= n; i++)

 partialSum += i * i * i;

 return partialSum;

}

• σ𝑖=1
𝑛 𝑖3

• Time complexity?
• O(1+1+n*1+1) = O(n)

O(1)
O(1)
O(n)
O(1)

O(1)

Time complexity: example #2
Algorithm Analysis

WSU

• Search Problem:
• Given an integer k and an array of integers:

 A0 , A1 , A2 , A3 , A4… A_{n-1}
which are pre-sorted, find i such that A_i = k. (Return –1 if k is not in the list.)

• For example, {-32, 2, 3, 9, 45, 1002}:
 Given that k = 9 → the program will return ?

34

Time complexity: example #2
Algorithm Analysis

WSU

• Search Problem:
• Given an integer k and an array of integers:

 A0 , A1 , A2 , A3 , A4… A_{n-1}
which are pre-sorted, find i such that A_i = k. (Return –1 if k is not in the list.)

• For example, {-32, 2, 3, 9, 45, 1002}:
• Given that k = 9 → the program will return 3

• → the number 9 in the 3rd position.

• Note: always start counting positions from 0, unless otherwise specified

35

Sequential search
Algorithm Analysis

WSU

36

public int bruteForceSearch(int k, int[] array){

 for(int i=0; i<array.length; i++){

 if(a[i] = = k){

 return i; /*found it!*/

 }

 }

 return –1; /*didn’t find, not in array*/

}

// Takes O(N)

A typical for-loop

Binary search: an alternative
Algorithm Analysis

WSU

1. Start in the middle of array.

2. If that is the correct number return.

3. If not, then check if the correct number is larger or smaller than the
number in the current position.

4. Take correct half of the array and go to the middle of that one.

5. Repeat.

37

Binary search: example
Algorithm Analysis

WSU

• Let’s look for k = 54.

• Start in middle of array
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83

• Is 54 bigger than 41? Yes, so look in upper half of array.
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83

• Is 54 bigger than 56? No, so take lower half of remaining array.
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83

• 5) Is 54 bigger than 51? Yes, so take upper half of remaining array.
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83
6) And 51 is in the 9th position (starting from 0)

38

Binary search:
decrease the
size of search
by roughly ½

Binary search: example
Algorithm Analysis

WSU

39

public int binarySearch(int k, int[] array){

 int left = -1;

 int right = array.length; //left and right are the array bounds

 while(left+1 ! = right) { //stop when left and right meet

 int middle = (left+right)/2; // find the middle point

 if(k < array[middle]). // in left half

 right = middle; // new right is the old middle

 if(k == array[middle]). // found it!

 return middle; // new right is the old middle

 if(k > array[middle]) // in right half

 left = middle; // new left is the old middle

 }

 return –1; // didn’t find it. Not in array

}

Binary search: example
Algorithm Analysis

WSU

• Big-O analysis: the worst-case scenario

• The worst case is that the array size has to be halved until we are
down to an array size of 1 (just like the example).

• Example: Once through for size 32, then size 16, 8, 4, 2, 1(stop)
• How many times through the loop? 5

• Generalization: if the array size is n = 2𝑖

• The time complexity is O(log(n))

• Compare with sequential search O(n)

• Binary search is more efficient!

40

Log(n) example
Algorithm Analysis

WSU

• i increases by a factor of 37 each time, so takes log(n) time

• If a loop is halved over and over, it is usually some form of O(log(n))

• Equivalently, if a loop’s work jumps by a constant factor each iteration,
it is O(log(n))

41

for(int i = 1; i<n; i *= 37){

 total++;

}

Linear complexity
Algorithm Analysis

WSU

• Increases by 2 each time, but not by a multiplicative factor of 2, so not
log(n).

• What is the run time?
 i = 0, 2, 4, 6, 8, …
• This will run for n/2 iterations and the runtime is O(n)

• Conclusion:
• When a loop increases or decreases by a constant amount each iteration, then

its growth rate is O(n).
42

for(int i = 0; i<n; i += 2){

 total++;

}

Simple iterative loop
Algorithm Analysis

WSU

• Nested loop:
• Outer loop goes n times

• Inner loop goes n times.

• n*n means:

 O(n^2)

43

for(int i = 1; i < n; i++){

 for(int j = 1; j < n; j++){

 total++;

 }

}

O(n)
O(n)
O(1)

Simple iterative loop
Algorithm Analysis

WSU

• Nested loop:
• Outer loop goes n times.

• Inner loop goes log(n) times

• So: 1 * log(n) * n
→ O(n log(n))

44

for(int i = 1; i < n; i++){

 for(int j = 1; j < n; j *= 2){

 total++;

 }

}

O(n)
O(log(n))
O(1)

Simple iterative loop
Algorithm Analysis

WSU

45

for(int i = 1; i < n; i++){

 for(int j = 1; j < n; j*=2){

 total++; }

 for(int k = 1; k < n; k++){

 total++; }

}

for(int x = 1; x < n; x++) { total++; }

Simple iterative loop
Algorithm Analysis

WSU

• O(n * (log(n) + n) + n)

• Simplified → O(n log(n) + n^2 + n) → O(n^2)

46

for(int i = 1; i < n; i++){

 for(int j = 1; j < n; j*=2){

 total++; }

 for(int k = 1; k < n; k++){

 total++; }

}

for(int x = 1; x < n; x++) { total++; }

O(n)
O(log(n))
O(1)
O(n)
O(1)

O(n)

Maximum subsequence sum
Algorithm Analysis

WSU

47Sec 2.4.3, Page 55

Bubblesort
Algorithm Analysis

WSU

48

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

49

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

50

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

51

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

52

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

53

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

54

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

55

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

56

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

57

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

58

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

59

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

60

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Bubblesort
Algorithm Analysis

WSU

• Time complexity?

• σ𝑖=1
𝑛 𝑛 − 𝑖 = σ𝑖=0

𝑛−1 𝑖 =
𝑛−1 𝑛

2
=

𝑛2−𝑛

2
 → Θ(n^2)

61

bubblesort(vector<int> & list) {

 i, j, temp;

 for(i=1; i < list.size(); ++i) {

 for(j=0; j < (list.size()-i); ++j) {

 if(list[j] > list[j+1]) {

 temp = list[j];

 list[j] = list[j+1];

 list[j+1] = temp;

 }

 }

 }

}

If statement rule
Algorithm Analysis

WSU

• if(condition)
 S1
Else
 S2

• Use the larger complexity of S1 or S2

• If you know the ratio of the two you could do a deeper analysis for a
tighter bound, but the default is to just take the larger branch cost

62

Complexity of recursive calls
Algorithm Analysis

WSU

• sample(k){

 if k < 2

 return 0

 return 1 + sample(k/2)

 }

• How much does each call change?

• What is the time complexity of this algorithm?

• What if it was sample(k/3)?

63

Measure the execution time
Algorithm Analysis

WSU

• Linux (Unix) has a “time” command to time how long it takes to run a
process: time [program with options]

• Can be used in assignments to clock program execution
• Real: Wallclock time from start to end of program

• User: Actual processing time of program

• Sys: Kernel processing time for the program

64

Why time varies?
Algorithm Analysis

WSU

• Definitely varies because other programs running

• User time varies because of input variability
• Input can make algorithms vary radically!

• Bubblesort goes from Ω(n) to O(n^2)

• Sys varies if kernel needs to do extra bookkeeping

 while your program runs
• Memory management, I/O operations, definitely if networking overhead

65

How to compare algorithms?
Algorithm Analysis

WSU

• Compare time requirements
• How much time will it take to execute the algorithm?

• Compare space requirements
• How much extra space is required for this algorithm to execute?

66

What to analyze in an algorithm?
Algorithm Analysis

WSU

• Options include:
• T_ave(n)

• T_worst(n)

• T_optimal(n)

• T_optimal(n) <= T_ave(n) <= T_worst(n)

• Do implementation details matter for algorithms analysis?
• No, implementation isn’t about algorithm analysis

• Actual running time: copying big arrays v.s. pass by reference example

• So: it matters in the real world when you code

67

Summary
Algorithm Analysis

WSU

• Big-O is the asymptotic run time for an algorithm
• once n gets “big enough”, which is defined as n > n_0

• All lower order runtime elements in the analysis are dropped for a
large n

• Halving work each time gets O(log(n))

• Increasing in a linear fashion gets you O(n)

68

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: How to compare algorithms?
	Slide 3: How to compare algorithms?
	Slide 4: How to compare algorithms?
	Slide 5: How to compare algorithms?
	Slide 6: How to compare algorithms?
	Slide 7: How to compare algorithms?
	Slide 8: How to compare algorithms?
	Slide 9: Benchmarks can be sensitive
	Slide 10: What is algorithm analysis?
	Slide 11: What is algorithm analysis?
	Slide 12: What is algorithm analysis?
	Slide 13: What is algorithm analysis?
	Slide 14: Worst-case growth rate
	Slide 15: Algorithm complexity
	Slide 16: Bounds
	Slide 17: What is T(n)?
	Slide 18: Big-O V.S. wall-clock time
	Slide 19: How to compare algorithms?
	Slide 20: O(1): constant complexity
	Slide 21: Big-O: worst-case analysis
	Slide 22: Big-O analysis: inaccurate
	Slide 23: Big-O analysis: growth rate
	Slide 24: How many operations in Find()?
	Slide 25: Time complexity of Find()
	Slide 26: Complexity for loops
	Slide 27: Nested loops
	Slide 28: Unrelated loops
	Slide 29: Reduction of non-constant time
	Slide 30: Why dropping constants?
	Slide 31: How to compare algorithms?
	Slide 32: Time complexity: example #1
	Slide 33: Time complexity: example #1
	Slide 34: Time complexity: example #2
	Slide 35: Time complexity: example #2
	Slide 36: Sequential search
	Slide 37: Binary search: an alternative
	Slide 38: Binary search: example
	Slide 39: Binary search: example
	Slide 40: Binary search: example
	Slide 41: Log(n) example
	Slide 42: Linear complexity
	Slide 43: Simple iterative loop
	Slide 44: Simple iterative loop
	Slide 45: Simple iterative loop
	Slide 46: Simple iterative loop
	Slide 47: Maximum subsequence sum
	Slide 48: Bubblesort
	Slide 49: Bubblesort
	Slide 50: Bubblesort
	Slide 51: Bubblesort
	Slide 52: Bubblesort
	Slide 53: Bubblesort
	Slide 54: Bubblesort
	Slide 55: Bubblesort
	Slide 56: Bubblesort
	Slide 57: Bubblesort
	Slide 58: Bubblesort
	Slide 59: Bubblesort
	Slide 60: Bubblesort
	Slide 61: Bubblesort
	Slide 62: If statement rule
	Slide 63: Complexity of recursive calls
	Slide 64: Measure the execution time
	Slide 65: Why time varies?
	Slide 66: How to compare algorithms?
	Slide 67: What to analyze in an algorithm?
	Slide 68: Summary

