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How to compare algorithms?
Algorithm Analysis

WSU

• Compare time requirements
• How much time will it take to execute the algorithm?

• Compare space requirements
• How much extra space is required for this algorithm to execute?

• Compare algorithms on some benchmarks?
• An algorithm might run faster on one machine versus another 

• e.g., AMD vs Intel; AMD vs NVIDIA; Xbox vs PS vs Switch; Windows vs Mac; etc.)

• The selected inputs for a given run of the algorithm might not be a 
representative sample

• It takes a lot of time to maintain a set of benchmarks
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1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

Image credit: https://gamersnexus.net/gpus/nvidia-geforce-rtx-4070-super-review-benchmarks-vs-rtx-4070-rx-7800-xt-more 

https://gamersnexus.net/gpus/nvidia-geforce-rtx-4070-super-review-benchmarks-vs-rtx-4070-rx-7800-xt-more
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2K RTX 4090 7800XT

AVG 122 84.6

↓ 1% 56.8 49.9

↓ 0.1% 37 35

1080p RTX 4090 7800XT

AVG 122.2 107.5

↓ 1% 55.7 52.8

↓ 0.1% 35.1 32.9

An easier 
algorithm?

A harder 
algorithm?

Larger fps*? Smaller fps?

*Fps: frames per second

Which benchmark 
we should use?



Benchmarks can be sensitive
Algorithm Analysis

WSU

• Given the list {3, 9, 1, 2, 3, 5} as input

• Find(X): return the index of X

• We expect Find(3) to execute faster than Find(5)
• Which is more representative of this input list, Find(3) or Find(5)?

• How is our benchmark affected if we decide to use different lists?

• e.g. {1, 2, 3, 3, 3, 4, 4, 4, 5, 9}

• Benchmarks are great for telling us how an algorithm will execute 
under a given set of circumstances

• but we ideally want something more generalizable 
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WSU

• A mathematical technique for estimating the rate at which execution 
time grows relative to the size of its input parameters

• A formal name: asymptotic analysis 

• Asymptotic analysis is a method of estimation that groups algorithms 
based on their growth rate

• Asymptotic analysis is unable to tell us for sure how one algorithm will 
perform exactly in absolute timed execution relative to another

• but it does give us some good hints

10

Is there non-asymptotic analysis?



What is algorithm analysis?
Algorithm Analysis

WSU

11

Kawaguchi, Kenji, and Haihao Lu. "Ordered sgd: A new stochastic optimization 

framework for empirical risk minimization." In International Conference on Artificial 
Intelligence and Statistics, pp. 669-679. PMLR, 2020. https://arxiv.org/abs/1907.04371 

• Asymptotic analysis result: an example in AI/ML

Asymptotic analysis: 
Problem scale approaches 
to infinitely large:

n→\infty

https://arxiv.org/abs/1907.04371
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• Asymptotic analysis result: an example in AI/ML

Yan, Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. "Optimal epoch stochastic gradient descent ascent methods for min-max 
optimization." Advances in Neural Information Processing Systems 33 (2020): 5789-5800. https://arxiv.org/abs/2002.05309 

Asymptotic analysis: 
ignore dependencies 
other than 𝜖, 𝑛

https://arxiv.org/abs/2002.05309
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• Non-asymptotic analysis result: an example in AI/ML

Yan, Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. "Optimal epoch stochastic gradient descent ascent methods for min-max 
optimization." Advances in Neural Information Processing Systems 33 (2020): 5789-5800. https://arxiv.org/abs/2002.05309 

(1) Not necessarily infinitely large scale
(2) Not necessarily hide constants

https://arxiv.org/abs/2002.05309


Worst-case growth rate
Algorithm Analysis

WSU

• It is great to have a positive disposition, but as scientists and 
engineers, we need to know worst-case behavior so that we can plan 
accordingly (Why?)

• Worst-case analysis is called "Big O" (pronounced "Big Oh") analysis

• Big-O analysis categorizes algorithms based on their growth rate
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• T(n) is time to run given an input size of n elements

• T(n) = O(f(n)): exist [c, n_o] such that T(n) <= cf(n) when n >= n_0
• e.g., T(n) <= 2.45 n^2, where f(n)=n^2

• T(n) = Ω(g(n)) when +[c, n_o] such that T(n) >= cg(n) when n >= n_0
• e.g., T(n) >= 1.03 n^2, where g(n)=n^2

• T(n) = Θ(h(n)) if and only if T(n) = O(h(n)) and T(n) =  Ω(h(n))
• e.g., 1.03 n^2 <= T(n) <= 2.45 n^2, where h(n)=n^2
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• O(f(n)) is an UPPER bound of T(n) -- “Worst case can be no more than” 
T(n) <= cf(n) 

• Ω(g(n)) is a LOWER bound of T(n)  -- “Best case can be no faster than” 
T(n) >= cg(n) 

• Only the order of the algorithm

• No details, e.g., constants (asymptotic analysis)

• T(n) = Θ(g(n)) is when O(g(n)) = Ω(g(n))  -- “It must be exactly”

• You will find Theta (Θ) also used as an average case
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• T(n) is the time for a function to run

• It is more specific than O(n), since O(n) is only of the order:

• T(n) = n^2 + n+1

• O(n) = n^2
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Running times of several algorithms for maximum subsequence sum (in seconds)
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• Also called constant time operations

• Execute in a certain amount of time

• Examples include: 
• my_array[50]

• int my_int = 3;

• sum = my_int + 5;

• product = my_int * 50;

• int foo = new int;

• if(my_int == 3)



Big-O: worst-case analysis
Algorithm Analysis
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• In Big-O analysis, we are interested the maximum number of 
operations required to complete an algorithm.

• How many operations are required to execute the following code?

21

if(answer == “n”)

{

 cout << "Thanks for playing!" << endl;

}

For any O(X) where:
 X = number of constant time operation.
If there exists a constant k such that k*1 >= X, we reduce to O(1)
Therefore, O(3) = O(1)

O(1)

O(2)
O(3)

What about O(100), 
O(1,000), O(10,000)?



Big-O analysis: inaccurate
Algorithm Analysis

WSU

• What are their Big-Os?
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Segment #1:

    int i = 0;

Segment #2:

    cout << "Hello";

    cout << "Hello";

    cout << "Hello";



Big-O analysis: growth rate
Algorithm Analysis

WSU

• Going back to our list: {3, 9, 1, 2, 3, 5}

• Big-O analysis: always find the last (worst-case)

• Performing a Find(5) is directly affected by the size of the list  

• Which Find(5) is faster?
• {3, 9, 1, 2, 3, 5}

• {3, 9, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5}

• {3, 9, 1, 2, 3, 1, 1, 1, 1, 1, …, 1, 1, 1, 1, 1, 5}

23

10000 items



How many operations in Find()?
Algorithm Analysis
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• A: It depends

• Q: Depends on what?

• A: It depends on the number of items in our list

• Q: How do we represent a list whose size can vary.

• A: With a variable!
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Time complexity of Find()
Algorithm Analysis
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• n: the number of elements in the list.

• n determines the number of operations to be executed.  

• This relationship (n v.s. # of operations) is linear. 

• The growth rate (i.e. Big-O) is also linear.  

• We denote a linear relationship with the variable n.
• → O(n)
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Complexity for loops
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• FOR loops:
• for(int i = 0; i < num_items; i++);

• WHILE loops:
• while(keep_going == 'y');

26

O(n) typically



Nested loops
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• for(int i = 0; i < num_items; i++) {
 for(int j = 0; j < num_items; j++) {
  swap(items[i], items[j])
 }
}

• In this case, we multiply the effect that num_items has on the growth 
rate, yielding O(n^2)
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Unrelated loops
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• O(n + n) or O(2n) → simplify to O(n)
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for(int i = 0; i < num_items; i++) {

 cout << "hello";

}

for(int j = 0; j < num_items; j++) {

 cout << "goodbye";

}



Reduction of non-constant time
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• In Big-O analysis, we always drop coefficients:
• O(2n) → O(n)

• O(40n) → O(n)

• O(1000000n) → O(n)

• This is because Big-O cares about placing algorithms into 
performance groups, not absolute T(n) calculations
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Why dropping constants?
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• Adopt the convention that there are no particular units of time

• Only the dominating factor matters for large n values:
• 1000 n v.s. n^2

• 1000 n + 1,000,000 v.s. n^2

• n^3 v.s. n^2 + 30,000

• n^3 v.s. n^3 + n^2

• Lower-order terms can generally be ignored for Big-O analysis, and 
constants thrown away if there is a higher order factor
• We only care about the growth rate over large n values for Big-O analysis

• There is plenty of work in the small n space too – example is for n <= 10 in 
sorting 30

Asymptotic analysis
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Function Name

c Constant

log(n) Logarithmic

log^2(n) Log-squared

n Linear

n log(n) (Will see this in sorting *a lot*)

n^2 Quadratic

n^3 Cubic

2^n Exponential
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public static int sum( int n ) {

 int partialSum;

 partialSum = 0;

 for( int i = 1; i <= n; i++ )

  partialSum += i * i * i;

 return partialSum;

}

• σ𝑖=1
𝑛 𝑖3

• Time complexity?
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public static int sum( int n ) {

 int partialSum;

 partialSum = 0;

 for( int i = 1; i <= n; i++ )

  partialSum += i * i * i;

 return partialSum;

}

• σ𝑖=1
𝑛 𝑖3

• Time complexity?
• O(1+1+n*1+1) = O(n)

O(1)
O(1)
O(n)
O(1)

O(1)



Time complexity: example #2
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• Search Problem:
• Given an integer k and an array of integers:

         A0 , A1 , A2 , A3 , A4… A_{n-1} 
which are pre-sorted, find i such that A_i = k. (Return –1 if k is not in the list.)

• For example, {-32, 2, 3, 9, 45, 1002}:
 Given that k = 9  → the program will return ?

34



Time complexity: example #2
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• Search Problem:
• Given an integer k and an array of integers:

         A0 , A1 , A2 , A3 , A4… A_{n-1} 
which are pre-sorted, find i such that A_i = k. (Return –1 if k is not in the list.)

• For example, {-32, 2, 3, 9, 45, 1002}:
• Given that k = 9  → the program will return 3

• → the number 9 in the 3rd position.

• Note: always start counting positions from 0, unless otherwise specified

35



Sequential search
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public int bruteForceSearch(int k, int[] array){

 for(int i=0; i<array.length; i++){

  if(a[i] = = k){

   return i;     /*found it!*/

  }

 }

 return –1;       /*didn’t find, not in array*/

}

// Takes O(N)

A typical for-loop



Binary search: an alternative
Algorithm Analysis

WSU

1. Start in the middle of array.

2. If that is the correct number return.

3. If not, then check if the correct number is larger or smaller than the 
number in the current position.

4. Take correct half of the array and go to the middle of that one.

5. Repeat.
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• Let’s look for k = 54.

• Start in middle of array
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83

• Is 54 bigger than 41? Yes, so look in upper half of array.
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83

• Is 54 bigger than 56? No, so take lower half of remaining array. 
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83

• 5) Is 54 bigger than 51? Yes, so take upper half of remaining array. 
 11, 13, 21, 26, 29, 36, 40, 41, 45, 51, 54, 56, 65, 72, 77, 83
6) And 51 is in the 9th position (starting from 0)

38

Binary search: 
decrease the 
size of search 
by roughly ½ 
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public int binarySearch(int k, int[] array){

    int left = -1;

    int right = array.length;             //left and right are the array bounds

    while(left+1 ! = right) {             //stop when left and right meet

        int middle = (left+right)/2;      // find the middle point

        if(k < array[middle]).            // in left half

            right = middle;               // new right is the old middle

            if(k == array[middle]).       // found it!

                return middle;          // new right is the old middle

            if(k > array[middle])         // in right half

                left = middle;            // new left is the old middle

 }

 return –1;                         // didn’t find it. Not in array

}



Binary search: example
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• Big-O analysis: the worst-case scenario

• The worst case is that the array size has to be halved until we are 
down to an array size of 1 (just like the example).

• Example: Once through for size 32, then size 16, 8, 4, 2, 1(stop)
• How many times through the loop? 5

• Generalization: if the array size is n = 2𝑖

• The time complexity is O(log(n))

• Compare with sequential search O(n)

• Binary search is more efficient!

40



Log(n) example
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• i increases by a factor of 37 each time, so takes log(n) time

• If a loop is halved over and over, it is usually some form of O(log(n))

• Equivalently, if a loop’s work jumps by a constant factor each iteration, 
it is O(log(n))

41

for(int i = 1; i<n; i *= 37){

 total++;

}



Linear complexity
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• Increases by 2 each time, but not by a multiplicative factor of 2, so not 
log(n). 

• What is the run time? 
 i = 0, 2, 4, 6, 8, … 
• This will run for n/2 iterations and the runtime is O(n)

• Conclusion:
• When a loop increases or decreases by a constant amount each iteration, then 

its growth rate is O(n).
42

for(int i = 0; i<n; i += 2){

    total++;

}
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• Nested loop:
• Outer loop goes n times

• Inner loop goes n times. 

• n*n means:

 O(n^2)

43

for(int i = 1; i < n; i++){

    for(int j = 1; j < n; j++){

        total++;

    }

}

O(n)
O(n)
O(1)



Simple iterative loop
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• Nested loop:
• Outer loop goes n times. 

• Inner loop goes log(n) times

• So: 1 * log(n) * n
→ O(n log(n))

44

for(int i = 1; i < n; i++){

    for(int j = 1; j < n; j *= 2){

        total++;

    }

}

O(n)
O(log(n))
O(1)
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for(int i = 1; i < n; i++){

    for(int j = 1; j < n; j*=2){

        total++;  }

    for(int k = 1; k < n; k++){

  total++;  }

}

for(int x = 1; x < n; x++) { total++; }



Simple iterative loop
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• O( n * ( log(n) + n ) + n  )

• Simplified → O( n log(n) + n^2 + n) → O(n^2)

46

for(int i = 1; i < n; i++){

    for(int j = 1; j < n; j*=2){

        total++;  }

    for(int k = 1; k < n; k++){

  total++;  }

}

for(int x = 1; x < n; x++) { total++; }

O(n)
O(log(n))
O(1)
O(n)
O(1)

O(n)
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47Sec 2.4.3, Page 55
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass 
without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
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• Time complexity?

• σ𝑖=1
𝑛 𝑛 − 𝑖 = σ𝑖=0

𝑛−1 𝑖 =
𝑛−1 𝑛

2
=

𝑛2−𝑛

2
 → Θ(n^2)
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bubblesort(vector<int> & list) {

  i, j, temp;

  for(i=1; i < list.size(); ++i) {

    for(j=0; j < (list.size()-i); ++j) {

      if(list[j] > list[j+1]) {

        temp = list[j];

        list[j] = list[j+1];

        list[j+1] = temp;   

       }

    }

  } 

}
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• if( condition )
 S1
Else
 S2

• Use the larger complexity of S1 or S2

• If you know the ratio of the two you could do a deeper analysis for a 
tighter bound, but the default is to just take the larger branch cost
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• sample(k){

  if k < 2

     return 0

  return 1 + sample(k/2)

  }  

• How much does each call change?

• What is the time complexity of this algorithm?

• What if it was sample(k/3)?
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Measure the execution time
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• Linux (Unix) has a “time” command to time how long it takes to run a 
process:      time [program with options]

• Can be used in assignments to clock program execution
• Real: Wallclock time from start to end of program

• User: Actual processing time of program

• Sys: Kernel processing time for the program
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Why time varies?
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• Definitely varies because other programs running

• User time varies because of input variability
• Input can make algorithms vary radically!

• Bubblesort goes from Ω(n) to O(n^2)

• Sys varies if kernel needs to do extra bookkeeping 

      while your program runs
• Memory management, I/O operations, definitely if networking overhead
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How to compare algorithms?
Algorithm Analysis

WSU

• Compare time requirements
• How much time will it take to execute the algorithm?

• Compare space requirements
• How much extra space is required for this algorithm to execute?
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What to analyze in an algorithm?
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• Options include:
• T_ave(n)

• T_worst(n)

• T_optimal(n)

• T_optimal(n) <= T_ave(n) <= T_worst(n)

• Do implementation details matter for algorithms analysis?
• No, implementation isn’t about algorithm analysis

• Actual running time: copying big arrays v.s. pass by reference example

• So: it matters in the real world when you code
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Summary
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• Big-O is the asymptotic run time for an algorithm 
• once n gets “big enough”, which is defined as n > n_0

• All lower order runtime elements in the analysis are dropped for a 
large n

• Halving work each time gets O(log(n))

• Increasing in a linear fashion gets you O(n)
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