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Algorithm Analysis

How to compare algorithms?

 Compare time requirements
* How much time will it take to execute the algorithm?

* Compare space requirements
* How much extra space is required for this algorithm to execute?

* Compare algorithms on some benchmarks?

* Analgorithm might run faster on one machine versus another
* e.g., AMD vs Intel; AMD vs NVIDIA; Xbox vs PS vs Switch; Windows vs Mac; etc.)

* The selected inputs for a given run of the algorithm might not be a
representative sample

* |ttakes a lot of time to maintain a set of benchmarks
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Algorithm Analysis

How to compare algorithms?
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Algorithm Analysis

How to compare algorithms?

An easier
algorithm?
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Algorithm Analysis

Benchmarks can be sensitive

* Giventhelist{3, 9,1, 2,3, 5} as input
e Find(X): return the index of X

* We expect Find(3) to execute faster than Find(s)
* Whichis more representative of this input list, Find(3) or Find(s)?
* How s our benchmark affected if we decide to use different lists?

e.g.91,2,3,3,3, 4 4, 4,5 93

* Benchmarks are great for telling us how an algorithm will execute
under a given set of circumstances

* but we ideally want something more generalizable



Algorithm Analysis

What is algorithm analysis?

* A mathematical technique for estimating the rate at which execution
time grows relative to the size of its input parameters

* A formal name: asymptotic analysisﬁ Is there non-asymptotic analysis? ]

* Asymptotic analysis is a method of estimation that groups algorithms
based on their growth rate

* Asymptotic analysisis unable to tell us for sure how one algorithm will
perform exactly in absolute timed execution relative to another

* butitdoes give us some good hints

10



Algorithm Analysis

What is algorithm analysis?

* Asymptotic analysis result: an example in Al/ML

Proposition 1. Denote z = gf; and ~(z) =
( Asymptotic analysis: Sisg 2 (1= 2)" " 2y Then, it holds that
Problem scale approaches : 1
to infinitely large: —— j,nﬁgﬁmzz i =)
\_ n-\infty j—— Moreover, it holds that 1 — %’7(2) 1s the cumulative
distribution function of Beta(z;q,s — q).

Kawaguchi, Kenji, and Haihao Lu. "Ordered sgd: A new stochastic optimization
framework for empirical risk minimization.” In International Conference on Artificial
Intelligence and Statistics, pp. 669-679. PMLR, 2020. https://arxiv.org/abs/1907.04371



https://arxiv.org/abs/1907.04371

Algorithm Analysis

What is algorithm analysis?

Asymptotic analysis:
ignore dependencies
otherthane, n

* Asymptotic analysis result: an example in Al/ML

Table 1: Summary of complexity results of this work and previous works for find

e-duality-gap solution for SCSC or an e-stationary solution for WCSC min-
problems. We focus on comparison of existing results without assuming smoot
of the objective function. Restriction means whether an additional condition
the objective function’s structure is imposed.

Setting | Works | Restriction ‘ Convergence Complexity
Nemirovski et al. (2009) | No Duality Gap O (1/¢*)

SCSC | Yan et al. (2019) Yes Primal Gap O (1/e +nlog(l/e))
This paper No Duality Gap O (1/¢)
Rafique et al. (2018) No Nearly Stationary 9) (1/€9)

WCSC | Rafique et al. (2018) Yes Nearly Stationary O (1/e* + n/e?)
This paper No Nearly Stationary | O (1 / 64)

Yan, Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. "Optimal epoch stochastic gradient descent ascent methods for min-max 12

optimization." Advances in Neural Information Processing Systems 33 (2020): 5789-5800. https://arxiv.org/abs/2002.05309



https://arxiv.org/abs/2002.05309

Algorithm Analysis

What is algorithm analysis?

(1) Not necessarily infinitely large scale
(2) Not necessarily hide constants

* Non-asymptotic analysis result: an example in Al/ML

Theorem 1 Suppose Assumption 1 and Assumption 2 hold and let § € (0,1) be a failing
probability and € € (0,1) be the target accuracy lelel for the duality gap. Let K = [log(<2)]

2 1 min{uA}RY
Ry > 2\/@} e = 30(5+310g(1/8) B2’

and § =48 /K, and the initial parameters are set b

1 _ _ min{g\}R?
Ty = 10(5+3108(1/3)) B2

max {3202(31 + By)23log(1/6),3200(5 + 3log(1/5)) max{B2, Bg}}
min{y, A\}? R}
Then the total number of iterations of Algorithm 1 to achieve an e-duality gap, i.e., Gap(Tr, i) <
€, with probability 1 — ¢ is
max {3202’(131 + By)?3log(}),3200(5 + 3log(1/8)) max{ B3, Bg}}
4min{p, \}e '

and

T >

ﬂot -

Yan, Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. "Optimal epoch stochastic gradient descent ascent methods for min-max
optimization." Advances in Neural Information Processing Systems 33 (2020): 5789-5800. https://arxiv.org/abs/2002.05309
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Algorithm Analysis

Worst-case growth rate

* Itis greatto have a positive disposition, but as scientists and
engineers, we need to know worst-case behavior so that we can plan

accordingly (Why?)
* Worst-case analysis is called "Big O" (pronounced "Big Oh") analysis

* Big-O analysis categorizes algorithms based on their growth rate

14



Algorithm Analysis

Algorithm complexity

* T(n)istime torun given an input size of n elements

e T(n)=0(f(n)): exist [c, n_o] such that T(n) <= cf(n) whenn>=n_o
e.g., T(n) <= 2.45n”*2, where f(n)=n"2

* T(n)=CQ(g(n)) when +[c, n_o] such that T(n) >=cg(n) whenn>=n_o
e.g., T(n) >=1.03 n*2, where g(n)=n”\2

* T(n)=0O(h(n))ifand only if T(n) = O(h(n)) and T(n) = Q(h(n))

e.g., 1.03 N2 <=T(n) <= 2.45 n*2, where h(n)=n"2

15



Algorithm Analysis

Bounds

* O(f(n))isan UPPER bound of T(n) -- “Worst case can be no more than”
&T(n) <= cf(n)

* Q(g(n))isa LOWER bound of T(n) -- “Best case can be no faster than”
<T(n) >=cg(n)

* Onlythe order of the algorithm

* No details, e.g., constants (asymptotic analysis)

* T(n)=0(g(n))is when O(g(n)) = Q(g(n)) -- "It must be exactly”
* You will find Theta (©) also used as an average case

16



Algorithm Analysis

What isT(n)?

* T(n)isthe time for a function to run
* Itis more specific than O(n), since O(n) is only of the order:
* T(n)=n2+n+1

e O(n)=n"2

17



Algorithm Analysis

Big-O V.S. wall-clock time

Algorithm Time

[nput 1 2 3 4

Size O(N?) O(N?) O(NlogN) O(N)

N = 100 0.000159 0.000006 0.000005 0.000002
N = 1,000 0.095857 0.000371 0.000060 0.000022
N = 10,000 86.67 0.033322 0.000619 0.000222
N = 100,000 NA 3.33 0.006700 0.002205
N = 1,000,000 NA NA 0.074870 0.022711

Running times of several algorithms for maximum subsequence sum (in seconds)



Running Time

Algorithm Analysis

How to compare algorithms?

I
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|
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Algorithm Analysis

O(1): constant complexity

* Also called constant time operations
* Executein a certain amount of time

* Examplesinclude:
* my_array[50]
* intmy_int=3;
* sum=my_int+5;
* product =my_int * 5o;
* intfoo=new int;
e if(my_int==73)

20



Algorithm Analysis

Big-O: worst-case analysis

* InBig-O analysis, we are interested the maximum number of
operations required to complete an algorithm.

* How many operations are required to execute the following code?

O(1) I:k>if (answer == “n”

O(3) {
O(2) =—p cout << "Thanks for playing!" << endl;

} Y
\
For any O(X) where:
X = number of constant time operation.

If there exists a constant k such that k*1 >= X, we reduce to O(a)
Therefore, O(3) = O(1) )

What about O(100),
O(12,000), O(20,000)?




Algorithm Analysis

Big-O analysis: inaccurate

* What are their Big-Os?

Segment #1:
int 1 = 0;

Segment #2:
cout << "Hello";
cout << "Hello";
cout << "Hello";




Algorithm Analysis

Big-O analysis: growth rate

* Goingbacktoourlist: {3, 9, 1, 2, 3, 5}
* Big-O analysis: always find the last (worst-case)
* Performing a Find(5) is directly affected by the size of the list

* Which Find(s) is faster?
* {3,9,12,3, 5}
¢ {3I 9l 1l 2[ 3[ 1l 1l 1l 1l 1l 1l 1l 1l 1l 1l 5}
¢ {3I 9l 1l 2[ 3[.11 1I 1I 1I 1I e 1I 1I 1I 1I 14 5}

10000 items

23




Algorithm Analysis

How many operations in Find()?

A: It depends
Q: Depends on what?

A: It depends on the number of items in our list

Q: How do we represent a list whose size can vary.
A: With a variable!




Algorithm Analysis

Time complexity of Find()

n: the number of elements in the list.

* ndetermines the number of operations to be executed.
* This relationship (nv.s. # of operations) is linear.
* The growth rate (i.e. Big-O) is also linear.

* We denote a linear relationship with the variable n.
e 20(n)

25




Algorithm Analysis

Complexity for loops

* FOR loops:

« for(inti=o0;i<num_items; i++);
e WHILE |OOpS: )[ O(n) typically ]
« while(keep_going =="y";




Algorithm Analysis

Nested loops

e for(inti=o0;i<num_items; i++) {
for(intj=0; j < num_items; j++) {
swap(items[i], items[j])
}
}

* Inthis case, we multiply the effect that num_items has on the growth
rate, yielding O(n”\2)

27



Algorithm Analysis

Unrelated loops

for(int 1 = 0; i < num items; i++) {
cout << "hello";

}

for(int j = 0; j < num items; Jj++) {
cout << "goodbye";

}

* O(n+n)orO(2n) =2 simplify to O(n)

28




Algorithm Analysis

Reduction of non-constant time

* InBig-O analysis, we always drop coefficients:
« O(2n) =2 O(n)
e O(gon) > O(n)
 O(a000000n) =2 O(n)

* This is because Big-O cares about placing algorithms into
performance groups, not absolute T(n) calculations



Algorithm Analysis

Why dropping constants?

* Adoptthe convention that there are no particular units of time
* Onlythe dominating factor matters for large n values:

°* 1000NV.Ss.N"2
* 1000 N + 1,000,000 V.S. N2 Asymptotic analysis ]

* n”3v.s.n”2+ 30,000
* n™3v.s.n3+n2

* Lower-order terms can generally be ignored for Big-O analysis, and
constants thrown away if there is a higher order factor
* Weonly care about the growth rate over large n values for Big-O analysis

* Thereis plenty of work in the small n space too —example is forn<=10in
sorting

30




Algorithm Analysis

How to compare algorithms?

Function Name
C Constant
log(n) Logarithmic
log~2(n) Log-squared
n Linear
n log(n) (Will see this in sorting *a lot¥*)
n/2 Quadratic
n3 Cubic
2\n Exponential

31



Algorithm Analysis

Time complexity: example #1

public static int sum( int n ) {
int partialSum;
partialSum = 0;
for( int i = 1; 1 <= n; i++ )
partialSum += i1 * 1 * 1i;
return partialSum;

no 3
* Lij=11

* Time complexity?

32




Algorithm Analysis

Time complexity: example #1

public static int sum( int n ) {
int partialSum; ------------------mmommmmmmmm - O(2)
partialSum = 0; -------------------mmmmomoooo - O(1)
for( int 1 = 1; i <= n; i++ ) --=- O(n)
partialSum += i * i * i; 77 O(@)
return partialSum; ~~"""TTTTTTTTTTTTTTTTTTrTTT O(2)
}
* Xieg U

* Time complexity?
* O(1+1+n*1+1)=0(n)




Algorithm Analysis

Time complexity: example #2

e Search Problem:

* Givenaninteger k and an array of integers:
Ao,A1,A2,A3,A4... A_{n-1}
which are pre-sorted, find i such that A_i = k. (Return —1 if k is not in the list.)
* Forexample, {-32, 2, 3, 9, 45, 1002}:
Given thatk =9 — the program will return?

34



Algorithm Analysis

Time complexity: example #2

* Search Problem:

* Givenaninteger k and an array of integers:

Ao,A1,A2,A3, A4... A_{n-1}
which are pre-sorted, find i such that A_i = k. (Return —1 if k is not in the list.)

* Forexample, {-32, 2, 3, 9, 45, 1002}:

* Giventhatk =9 — the program will return3

> thenumberginthe 3rd position.

* Note: always start counting positions from o, unless otherwise specified

35



Algorithm Analysis

Sequential search

public int bruteForceSearch(int k,

if(af[i] = = k) {
return 1i;
}
}

return -1;

}
// Takes O(N)
AN

for(int i=0; i<array.length;

int[] array) {
i++) {

/*found it!*/

/*didn’t find, not in array*/

NN

A typical for-loop ]

36




Algorithm Analysis

Binary search: an alternative

1. Start in the middle of array.
2. Ifthatis the correct number return.

3. Ifnot, then checkif the correct number is larger or smaller than the
number in the current position.

4. Take correct half of the array and go to the middle of that one.
5. Repeat.

37



Algorithm Analysis

Binary search: example

e Let'slook fork=54.

» Startin middle of array
11, 13, 21, 26, 29, 36, 40, 45, 51, 54, 56, 65, 72, 77, 83
* |s 54 biggerthan 417 Yes, so look in upper half of array.
45, 51, 54,(56} 65, 72, 77, 83

* Is 54 biggerthan 56? No, so take lower half of remaining array.

45,(51) 54,

* 15)ls 54 bigger than 51?Yes, so take upper half of remaining array.

54
6) And 51 is in the gth position (starting Pom 0)

4 Binary search: )
decrease the
size of search

y)ughly V2 )

—




Algorithm Analysis

Binary search: example

public int binarySearch(int k,

int left =

int right = array.length;

while (left+1l
int middle
if (k < array[middle]).

middle;

array[middle]).
return middle;

if (k > array[middle])

middle;

right
if (k

}

return -1;

right) {
(left+right)/2;

array) {

//left and right are the array bounds
//stop when left and right meet

// f£ind the middle point

// in left half

// new right is the old middle

// found it!

// new right is the old middle

// in right half

// new left is the old middle

// didn’t find it. Not in array

39




Algorithm Analysis

Binary search: example

* Big-O analysis: the worst-case scenario

* The worst case is that the array size has to be halved until we are
down to an array size of 1 (just like the example).

* Example: Once through forsize 32, then size 16, 8, 4, 2, 1(stop)

* How many times through the loop? 5

* Generalization: if the array size is n = 2!
* The time complexity is O(log(n))
* Compare with sequential search O(n)
* Binary search is more efficient!

40



Algorithm Analysis

Log(n) example

for(int i = 1; i<n; i *= 37){
total++;

}

* iincreases by a factor of 37 each time, so takes log(n) time
* Ifaloopishalved over and over, it is usually some form of O(log(n))

* Equivalently, if a loop’s work jumps by a constant factor each iteration,
itis O(log(n))



Algorithm Analysis

Linear complexity

for(int i = 0; ikn; i += 2) {
total++;

}

* Increases by 2 each time, but not by a multiplicative factor of 2, so not
log(n).
* Whatisthe runtime?
1=0,2,4,6,8, ...

e This will run for n/2 iterations and the runtime is O(n)

e Conclusion:

* Whena loop increases or decreases by a constant amount each iteration, then
its growth rate is O(n).




Algorithm Analysis

Simple iterative loop

for(int i = 1; 1 < n; i++){ --—----

* Nested loop:

for(int j

total++;

}

l; J < n; j++){--

* Outerloop goesn times
* Innerloop goes ntimes.

N*¥N Mmeans:
O(n2)

43



Algorithm Analysis

Simple iterative loop

* Nested loop:

* Outerloop goes n times.

for(int i = 1; i < n; i++) {1
for(int j =

}

total++;

1; 3 <nj 3 *=2){

* Innerloop goes log(n) times

* So:1*log(n) *n

- O(n log(n))

-~ O(n)

- O(log(n))
- O(2)

44,



Algorithm Analysis

Simple iterative loop

for(int 1 = 1; i < n; i++){

}

for(int j = 1; j < n; j*=2){
total++; }
for(int k = 1; k < n; k++) {
total++; }

for(int x = 1; x < n; x++) { total++;

}

45



Algorithm Analysis

Simple iterative loop

* O(n*(logn)+n)+n)

* Simplified = O(n log(n) + nA2 + n) = O(n”\2)

for(int 1 = 1; i < n; i++) { -------mmmmmmmmmmmmmmees -- O(n)
for(int j =1; j < n; j*=2){---—------ -~ O(log(n))
total++; } - - O(2)
for(int k = 1; k < n; k++) { = O(n)
totalt+; Jrmmmrmrmmmememeeeeeees - 0(2)
}
for(int x = 1; x < n; x++) { total++; }--- O(n)




Algorithm Analysis

Maximum subsequence sum

Maximum Subsequence Sum Problem
Given (possibly negative) integers Ay, A,, . . . , Ay, find the maximum value of ijzi Ap.
(For convenience, the maximum subsequence sum is O if all the integers are negative.)

Example:
For input —2, 11, —4, 13, —5, —2, the answer is 20 (A, through A4).
1 j** Lo . . . :
2 * Cubic maximum contiguous subsequence sum algorithm. ? :/Quadratlc maximum contiguous subsequence sum algorithm.
*
j ini maxSubSuml( const vector<int> & a ) 4 int maxSubSumz (" const vector<int> & a )
5 501
6 int maxSum = 03 6 int maxSum = 0;
7 7
8 for( int i = 05 1 < a.size( ); ++ ) 8 for(1int i =0; 1 <a.size( ); ++i )
9 for( int j = i; § < a.size( ); ++j ) 9 {
10 { 10 int thisSum = 0;
11 int thisSum = 0; 11 for( int j = i3 j < a.size( )5 ++j )
12 12 {
13 for( int k = i; k <= j; ++k ) 13 thisSum += a[ j ];
14 thisSum += a[ k ]; 14
15 15 if( thisSum > maxSum )
16 if( thisSum > maxSum ) 16 maxSum = thisSum;
17 maxSum = thisSum; 17 }
18 } 18 }

[
o
—
o

20 return maxSum; 20 return maxSum;
21 '} 21 1}

. . . 47
Figure 2.5 Algorithm 1 Figure 2.6 Algorithm 2 Sec 2.4.3, Page 55



Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 48
[



Algorithm Analysis

Bubblesort

First Pass:

51)428)—> QEM 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(15428)—> (14528),Swapsince 5> 4
(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 49
[




Algorithm Analysis

Bubblesort

First Pass:

(512428)—> ( 1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(154p8)—> 8),Swap since 5> 4

(14528)—> (14258) Swap since 5> 2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 50
[




Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (1 ), Swap since 5> 2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 51
[




Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14 2@) —> (14 2@, Now, since these elements are already in order (8 > ), algorithm does not swap them.

Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 52
[



Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

(14p58)—>(14p58)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 53
[




Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

(14258)—>(14258)

(1@58)—>(12458),Swapsince4>2

(12458)—>(12458)

(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 54
[




Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(1945B)—>(12(45B)
(12458)—>(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)
(

12458)—>(12458) 55
[




Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2

(12458)—>(12458)

(124[@» (12@)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458)

(12458)—>(12458) 56




Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.
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Bubblesort

First Pass:
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Algorithm Analysis

Bubblesort

First Pass:

(51428)—>(215428), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(15428)—> (14528),Swapsince 5> 4

(14528)—> (14258),Swapsinceg5>2

(14258)—>(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:

(14258)—>(14258)

(14258)—>(12458),Swapsince 4>2
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Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass
without any swap to know it is sorted.

Third Pass:
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(124 8)—>(12458)
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Algorithm Analysis

Bubblesort

bubblesort (vector<int> & list) {
i, j, temp;
for(i=1l; i < list.size(); ++i) {
for(j=0; j < (list.size()-1i), ++3)
if (1ist[j] > list[j+1]) {
temp = list([]j];
list[]j] = list[j+1];
list[j+1] = temp;

}
}
}
}
* Time complexity?
- 2_
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Algorithm Analysis

If statement rule

e if( condition)
Sa
Else
S2

* Usethe larger complexity of S1 orS2

* Ifyou know the ratio of the two you could do a deeper analysis for a
tighter bound, but the default is to just take the larger branch cost

62



Algorithm Analysis

Complexity of recursive calls

* sample (k) {
if k < 2
return 0
return 1 + sample(k/2)

}

* How much does each call change?
* Whatis the time complexity of this algorithm?

* Whatifit was sample(k/3)?




Algorithm Analysis

Measure the execution time

* Linux(Unix) has a “time” command to time how long it takes to run a
process: time [program with options]

* (Canbeusedin assignments to clock program execution
* Real: Wallclock time from start to end of program
* User: Actual processing time of program
* Sys: Kernel processing time for the program

G- —
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Algorithm Analysis

Why time varies?

» Definitely varies because other programs running 8

* User time varies because of input variability &
* Input can make algorithms vary radically! SN SR

* Bubblesort goes from Q(n) to O(n”2)

n
——p

* Sysvaries if kernel needs to do extra bookkeeping

while your program runs
* Memory management, I/O operations, definitely if networking overhead




Algorithm Analysis

How to compare algorithms?

 Compare time requirements
* How much time will it take to execute the algorithm?

* Compare space requirements
* How much extra space is required for this algorithm to execute?
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Algorithm Analysis

What to analyze in an algorithm?

* Optionsinclude:
e T_ave(n)
e T_worst(n)
* T_optimal(n)
* T_optimal(n) <=T_ave(n) <=T_worst(n)

* Doimplementation details matter for algorithms analysis?
* No, implementation isn't about algorithm analysis
* Actual running time: copying big arrays v.s. pass by reference example
* So:it mattersin the real world when you code
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Algorithm Analysis

Summary

* Big-O is the asymptotic run time for an algorithm
* once ngets “bigenough”, whichis defined asn >n_o

* Alllower order runtime elements in the analysis are dropped for a
large n

* Halving work each time gets O(log(n))

* Increasing in a linear fashion gets you O(n)
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