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Proofs
Math Review: Proof & Recursion

WSU

• What do we want to prove?
• Properties of a data structure always hold for all operations

• Algorithm’s running time / memory will never exceed some  threshold

• Algorithm will always be correct

• Algorithm will always terminate

• Proof techniques
• Proof by induction

• Proof by counterexample

• Proof by contradiction
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Proof by induction

WSU

• Goal: Prove some hypothesis is true

• Three-step process
• Base case: Show hypothesis is true for some initial conditions (k=1)

• Inductive hypothesis: Assume hypothesis is true for all cases ≤ k

• Inductive step: Show hypothesis is true for next larger value (typically k+1)
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Inductive proof: example

WSU

• Prove arithmetic series
• σ𝑖=0

𝑁 𝑖 = 𝑁(𝑁 + 1)/2

• Base case: show it is true for 𝑁 = 0

• σ𝑖=0
𝑁 𝑖 = 0 ⇔

𝑁 𝑁+1

2
= 0

• Inductive hypothesis: assume it is true for all 𝑁 ≤ 𝑘: σ𝑖=0
𝑘 𝑖 =

𝑘 𝑘+1

2

• Inductive step: generalize to 𝑘 + 1 to see whether σ𝑖=0
𝑘+1 𝑖 =

(𝑘+1) 𝑘+2

2
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Inductive proof: example

WSU

• Prove arithmetic series
• σ𝑖=0

𝑁 𝑖 = 𝑁(𝑁 + 1)/2

• Base case: show it is true for 𝑁 = 0

• σ𝑖=0
𝑁 𝑖 = 0 ⇔

𝑁 𝑁+1

2
= 0

• Inductive hypothesis: assume it is true for all 𝑁 ≤ 𝑘: σ𝑖=0
𝑘 𝑖 =

𝑘 𝑘+1

2

• Inductive step: generalize to 𝑘 + 1 to see whether σ𝑖=0
𝑘+1 𝑖 =

(𝑘+1) 𝑘+2

2

• σ𝑖=0
𝑘+1 𝑖 = σ𝑖=0

𝑘 𝑖 + 𝑘 + 1 =
𝑘 𝑘+1

2
+ 𝑘 + 1 = 𝑘 + 1

𝑘

2
+ 1 =

𝑘+1 𝑘+2

2
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Inductive proof: example

WSU

• More examples:
• Prove the geometric series

• σ𝑖=0
𝑁 𝐴𝑖 =

𝐴𝑁+1−1

𝐴−1

• Prove that the number of nodes 𝑁 in a complete binary tree of depth 𝐷 is 
2𝐷+1  − 1
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Proof by counterexample

WSU

• Prove hypothesis is not true by giving an example that does not hold
• Example: how to prove 2𝑁 >  𝑁2 ?

• Proof by letting 𝑁 = 2 (or 3 or 4)
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Counterexample: example

WSU

• Given N cities and costs for traveling between each pair of cities, a 
“least-cost tour” is one which visits every city exactly once with the 
least cost

• Hypothesis: Any sub-path within any least-cost tour will also be a least 
cost tour for those cities included in the sub-path.

• Is this hypothesis true?
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least-cost tour

hypothesis: sub-path: least tour?

start city end city



Counterexample: example

WSU

• Counterexample
• Cost (A→B→C→D) = 40: least cost tour for {A, B, C, D}

• What is the least cost tour for {A, B, C}?

• Cost (A→B→C) = 30

• Cost (A→C→B) = 20
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100

not the least 
cost tour

the least 
cost tour



Proof by contradiction

WSU

• Start by assuming that the hypothesis is false

• Show this assumption could lead to a contradiction (i.e., some known  
property is violated)

• Therefore, hypothesis must be true
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premises

conclusion

universe universe

premises⇒conclusion premises⇏conclusion
complement



Contradiction: example

WSU

• Single pair shortest path problem
• Given N cities and costs for traveling

       between each pair of  cities, find the least-cost path to go from city X to city Y

• Hypothesis: A least-cost path from X to Y contains least-cost  paths 
from X to every city on the path
• E.g., if X→A → C → B → Y is a least-cost path from X to Y,  then

• X → A → C → B must be a least-cost path from X to B

• X → A → C must be a least-cost path from X to C

• X → A must be a least-cost path from X to A

• Conclusion: Least cost paths should contain smaller least cost paths 
starting at the source
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X C B

A

Y

Hypothesis: P=X→A→C→B→Y is least-cost 



Contradiction: example

WSU

• Let P be a least-cost path from X to Y

• Now, assume that the hypothesis is false:
• ==> there exists C along X->Y path, such that, there is a better path from X to C 

than the one in P

• ==> So we could replace the subpath from X to C in P with this less-cost path, to 
create a new path P’ from X to Y

• ==> Thus we now have a better path from X to Y

• i.e., cost(P’) < cost(P)

• ==> But this violates the fact that P is a least-cost path from X to Y (hence a 
contradiction!)

• Therefore, the original hypothesis must be true
12
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X C B

A

Y

D

Hypothesis: P=X→A→C→B→Y is least-cost 

P’=X→A→D→B→Y



Recurrence V.S. recursion

WSU

• A recursive function or a recursive formula is defined in terms of itself

• Example:

13

Math Review: Proof & Recursion

𝑛! =

1 if 𝑛 = 0

𝑛 ∗ 𝑛 − 1 ! if 𝑛 > 0

Mathematical 
recurrence

Factorial (n) 

{

if (n = 0)

     then return 1;

else 

     return (n * 

Factorial (n-1));

}

Recursion (code)



Basic rules of recursion

WSU

• Base cases
• Must always have some base cases, which can be  solved without recursion

• Making progress
• Recursive calls must always make progress toward  a base case

• Design rule
• Assume all recursive calls work

• Compound interest rule
• Try not to duplicate work by solving the same  instance of a problem in separate 

recursive calls
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Recursion: example

WSU

• Fibonacci numbers
• F(0) = 1

• F(1) = 1

• F(n) = F(n-1) + F(n-2)
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Fibonacci (n)

{

   if (n ≤ 1)

      then return 1

   else return (Fibonacci (n-1) + Fibonacci (n-2))

}



Recursion: example

WSU

• Computation tree for: Fibonacci (5)
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F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Runtime for the recursive code 
1. proportional to the size of the tree
     (and that is a lot wasteful)
2. (#nodes for Depth D) ≤ 2^(D+1) – 1
3. n=D+1

0

1

2

3

4 (D=4)

Binary 
tree



Running time for Fibonacci(n)?

WSU

• Show that the running time 𝑇(𝑛) of Fibonacci(n) is exponential in n, 
Depth 𝐷 = 𝑛 − 1

• This only gives an upper bound for 𝑇(2𝑛)
• We also need to prove that T(n) is at least exponential

• Use mathematical induction
• A tighter upper bound: 𝑇(𝑛) < (5/3)𝑛for n>=1
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Solving recurrences

WSU

• Example:

• How much time does Algo1 take?
• Express time as a function of n (input size)

• Let T(n) be the time taken by Algo1 on an input size n

• Then: T(n) = 1 + T(n/2) + T(n/2)

                            = 2T(n/2) + 1
18
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Algo1(A,1,n)

    // A is an integer array of size n

    if(n<2) return;  

    x = floor(n/2);

    Algo1(A,1,x);  

    Algo1(A,x+1,n);



Solving recurrences

WSU

• Recurrence:
• T(n) = 2T(n/2) + 1

• T(1) = 1

• Solution (via geometric sequence)
 T(n) = 2T(n/2) + 1

          = 4T(n/4) + 2+ 1

          = 8 T(n/8) + (4+2+1)

          = …… (K steps)

          = 2𝐾 𝑇 𝑛/2𝐾 + σ𝑘=0
𝐾−1 2𝑘

          = n T(1) + n-1

          = 2n-1             [Closed-form]
19
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Expand K times 
such that 𝑛/2𝐾  = 1



Lower bound for Fibonacci(n)?

WSU

• T(n) = T(n-1) + T(n-2)

• Assume T(n-1) ~ T(n-2), approximation
= 2T(n-2)
= 2*(2T(n-4))
= 4T(n-4)
= 8T(n-6)
= 2k * T(n - 2k)

• For termination, n = 2k, k = n/2
• T(n) = 2^(n/2) * T(0)

T(n) = O(2^(n/2))
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Recurrence V.S. recursion

WSU

• Recurrence vs. Recursion
• A recurrence need not always be implemented using recursion

• How?

21
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Tail recursion → iteration

WSU

22

Math Review: Proof & Recursion

M

A

A

A

M

A A A

A(n){

  …

  A(n-1)

}

tail recursive code

A(n){

  for (i=n; i>=0; i--)

  {……}

}

while or for loop

The result of A(n-1)  is 
NOT needed/used in A(n)



Example: print 1 to n

WSU
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void print(int n)

{

    if (n < 0) return;

    cout << " " << n;

    print(n-1);

}

void print(int n)

{

    for (int i = n; i > 0; i--) {

        cout << " " << n;

    }

}

Same time complexity, 
but this one is better!

Iterative code is usually more efficient than tail recursive code:
Recursion requires more overhead due to function calls (Stack frame)

Then why still using recursion? 
Recursion: readable code, easy to understand, well suit divide-and-
conquer algorithms

Fibonacci number using loop?



Recursive function calls

WSU
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M() 

{

  A()

  A()

  B()

  C()

}

A() 

{

  ……

}

B() 

{

  B()

}

C() 

{

  D()

  E()

}

D() 

{

  ……

}

E() 

{

  F()

  E()

}

F() 

{

  ……

} M

A A B C

B

B

D E

F E

M

A B CA

B

B

D E

F E

time

ca
ll 

se
q

u
en

ce



Recursion: example

WSU

• Tower of Hanoi
• Goal: 

• Move all disks from peg A to peg B using peg C

• Rules:
• Move one disk at a time

• Larger disks cannot be placed above smaller disks

• Question: What is the minimum number of moves  necessary to solve 
the problem?
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A B C

Image credit: https://en.wikipedia.org/wiki/Tower_of_Hanoi#/media/File:Tower_of_Hanoi.jpeg 

https://en.wikipedia.org/wiki/Tower_of_Hanoi


Recursion: example

WSU

• A Recursive Algorithm: Find the base case -> N=1
• Move the top n-1 disks, “recursively”, from A to C (using B)

• Move nth disk (i.e., largest & bottom-most in A) from A to B

• Move all the n-1 disks, “recursively”, from C to B (using A)

26
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A

B

C(1) Move (n-1, A, C)

(2) Move (1, A, B)

(3) Move (n-1, C, B)



Recursion: example

WSU

27

Math Review: Proof & Recursion

Image credit: https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/ 

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/


Recursion: example

WSU

• Pseudocode
• Move (n, A, B, C)

• PRE: n disks on A; B and C unaffected

• POST: n disks on B; A and C unaffected

• BEGIN

• IF n=0 THEN RETURN

• Move (n-1, A,C,B)

• Move nth disk from A to B directly

• Move (n-1,C,B,A)

• END

28
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Recursion: example

WSU

https://www.mathsisfun.com/games/towerofhanoi.html

• Define: T(n)= minimum required number of moves

• Analysis: starts with T(1)=1
• T(n) = 2T(n-1)+1

• Solving this: T(n)=2𝑛-1 (how?)

• In the original Tower of Hanoi problem, n=8 & so T(n)=255

• For Tower of Brahma, n=64
• 264-1 moves made by a priest in a temple

• Assuming each move takes 1 second, this would take 5,000,000,000 centuries to 
complete

• Online game: https://www.mathsisfun.com/games/towerofhanoi.html 29
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https://www.mathsisfun.com/games/towerofhanoi.html


Summary

WSU

• Floors, ceilings, exponents, logarithms, series, and modular arithmetic

• Proofs by mathematical induction,  counterexample and contradiction

• Recursion and solving recurrences

• Tools to help us analyze the performance of our data structures and 
algorithms
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