CPTS 223 Advanced Data
Structure C/C++

Math Review: Proof & Recursion

Math Review: Proof & Recursion

Proofs

* What do we want to prove?
* Properties of a data structure always hold for all operations
* Algorithm’s running time / memory will never exceed some threshold
* Algorithm will always be correct
* Algorithm will always terminate

* Proof techniques
* Proofby induction
* Proofby counterexample
* Proof by contradiction

Math Review: Proof & Recursion

Proof by induction

* Goal: Prove some hypothesis is true

* Three-step process
* Base case: Show hypothesis is true for some initial conditions (k=1)
* Inductive hypothesis: Assume hypothesis is true for all cases < k
* Inductive step: Show hypothesis is true for next larger value (typically k+1)

Math Review: Proof & Recursion

Inductive proof: example

* Prove arithmetic series
« YN,i=NN+1)/2
* Base case:showitistrueforN =0

c Yi=0e o0
. . - . k(k+1
» Inductive hypothesis: assume it is true forall N < k: ¥ i = et 1)
2
k+1; _ (k+1)(k+2)

* Inductive step: generalize to k + 1 to see whether),;=5 i = 2

Math Review: Proof & Recursion

Inductive proof: example

* Prove arithmetic series
« YN,Ji=NN+1)/2

* Base case:showitistrueforN =0
N(N+1)

. N N i=0o) 0
' : e . k(k+1
* Inductive hypothesis: assume it is true forall N < k:Z{.‘zol _ ke+1)
2
(k1) (k+2))
» Inductive step: generalize to k + 1 to see whether Y5t i = et)2(+2)

o YHHli=%k i+(k+1)= k("“) +(k+1D =G+ () i ("“)2(’”2)
N y

Math Review: Proof & Recursion

Inductive proof: example

* More examples:
* Provethe geometric series

* XiloAl= Alr_l;l
* Prove that the number of nodes N in a complete binary tree of depth D is
2D+1 —1

Math Review: Proof & Recursion

Proof by counterexample

* Prove hypothesis is not true by giving an example that does not hold

e Example: how to prove 2N > N?2?
* Proof by letting N = 2 (or3 or 4)

Math Review: Proof & Recursion

Counterexample: example

* Given N cities and costs for traveling between each pair of cities, a
“least-cost tour” is one which visits every city exactly once with the
least cost

* Hypothesis: Any sub-path within any least-cost tour will also be a least
cost tour for those cities included in the sub-path.

* Isthis hypothesis true?

4 hypothesis: sub-path: least tour?___)

i ON O | O
[startcity]7 O\/ ’ﬁ\O/ \i end city]

Math Review: Proof & Recursion

Counterexample: example

* Counterexample
 Cost(A>B—>C—->D) = 40: least cost tour for {A, B, C, D}
* Whatis the least cost tour for {A, B, C}?

e)
* Cost(A2B—>(C)=30— - notthe least
* Cost(A>C—2>B)=20 cost tour)
20 N
@ @ the least
100 cost tour
J
100 10
10

O

Math Review: Proof & Recursion

Proof by contradiction

* Start by assuming that the hypothesis is false

* Show this assumption could lead to a contradiction (i.e., some known
property is violated)

* Therefore, hypothesis must be true

premises=conclusion < > premises#conclusion
complement

premises ~_

/

conclusion

universe universe

Math Review: Proof & Recursion

Contradiction: exampe
B

Hypothesis: P=X>A—>C—>B->Y is least-cost

* Single pair shortest path problem
* Given N cities and costs for traveling
between each pair of cities, find the least-cost path to go from city X to city Y

* Hypothesis: A least-cost path from XtoY contains least-cost paths
from X to every city on the path
 E.g,ifX2>A > C—>B—>Yisaleast-cost pathfrom XtoY, then
* X=2>A->C-> Bmustbe aleast-cost path from Xto B
« X =2 A > Cmustbe aleast-cost path from X to C
* X =2 Amust be a least-cost path from Xto A

* Conclusion: Least cost paths should contain smaller least cost paths
starting at the source

11

Math Review: Proof & Recursion

Contradiction: exampe
B @ 00—

* LetP bealeast-cost path fromXtoY

Hypothesis: P=X>A—>C—>B-=>Y is least-cost
* Now, assume that the hypothesisis false: P'=X>A>D>B>Y

* ==>there exists C along X->Y path, such that, there is a better path from X to C
thanthe oneinP

* ==>S5S0 we could replace the subpath from X to Cin P with this less-cost path, to
create anew path P’ fromXtoY

* ==>Thus we now have a better path fromXtoY

* l.e., cost(P’) < cost(P)

« ==>But this violates the fact that P is a least-cost path from XtoY (hence a

contradiction!)

* Therefore, the original hypothesis must be true

12

Math Review: Proof & Recursion

RecurrenceV.S. recursion

e A recursive function or a recursive formula is defined in terms of itself

* Example:

Factorial (n)
{
" lifn =0 if (n = 0)

then return 1;
else
nx(n—1D!ifn>0 return (n *
Factorial (n-1));

} N
N

Mathematical
recurrence

Recurﬂon(code)}

Math Review: Proof & Recursion

Basic rules of recursion

* Base cases
* Must always have some base cases, which can be solved without recursion

* Making progress

* Recursive calls must always make progress toward a base case

* Designrule
 Assume all recursive calls work

 Compound interest rule

* Try not to duplicate work by solving the same instance of a problem in separate
recursive calls

14

Math Review: Proof & Recursion

Recursion: example

Fibonacci numbers

F(o) =1
F(1)=1
F(n) = F(n-1) + F(n-2)

Fibonacci (n)
{
if (n £ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

15

Math Review: Proof & Recursion

Recursion: example

» Computation tree for: Fibonacci (5)

Binary

tree

() I 0
F(4) F(3) p------------- 1 Runtime for the recursive code
1. proportional to the size of the tree
F(3) F(2) F(2) F(1) -2 (and that is a lot wasteful)
/\ /\ 2. (#nodes for Depth D) < 2/ (D+1) -1
F) | | FO) | | F() | | FO) | | F1) | | F(O) fr-mmmmmemmmmmeeev 3 |3:-n=b+1
N

-- 4 (D=4)

16

Math Review: Proof & Recursion

Running time for Fibonacci(n)?

* Show that the running time T (n) of Fibonacci(n) is exponential in n,
DepthD =n-—1

* This only gives an upper bound for T (2")

* Wealso need to prove that T(n) is at least exponential

e Use mathematical induction
* Atighterupperbound: T(n) < (5/3)"forn>=1

17

Math Review: Proof & Recursion

Solving recurrences

 Example: |Algol(a,1,n)
// A is an integer array of size n

if (n<2) return;
x = floor(n/2);
Algol (A,1,x);

Algol (A, x+1 ,n) ;

* How much time does Algox take?
* Express time as a function of n (input size)

* LetT(n) be the time taken by Algo1 on an inputsize n
* Then:T(n)=1+T(n/2) +T(n/2)
=2T(n/2) +1 18

Math Review: Proof & Recursion

Solving recurrences

e Recurrence:
* T(n)=2T(n/2)+1
e T(1)=1

* Solution (via geometric sequence)
T(n)=2T(n/2) +1

=4T(N/4) + 2+ 1

=8T(n/8) + (4+2+1) Expand K times

= e (K steps) such that n/2K =1
= 2K T(n/2%) + YK-L 2k

=nT(1)+n-1

=2n-1 [Closed-form] 19

Math Review: Proof & Recursion

Lower bound for Fibonacci(n)?

e T(n)=T(n-1) + T(n-2)

* AssumeT(n-1) ~ T(n-2), approximation
=2T(n-2)
=2%(2T(n-4))
= 4T(n-4)
= 8T(n-6)
=2k *T(n - 2k)

* Fortermination, n=2k, k=n/2

* T(n)=27(n/2) *T(0)
T(n) = 0(2A(n/2))

Math Review: Proof & Recursion

RecurrenceV.S. recursion

e Recurrence vs. Recursion

* Arecurrence need not always be implemented using recursion
e How?

Math Review: Proof & Recursion

Tail recursion =2 iteration

tail recursive code

M
A(n) {
A
A(n-1)
A)
A
Theresult of A(n-1) is
NOT needed/used in A(n)
M while or for loop
A(n) {
A A A for (i=n; i>=0; i--)
{....}
}

Math Review: Proof & Recursion

Example: print1ton

void print(int n)

{
if (n < 0) return;
cout <K " " K< n;
print (n-1) ;

void print(int n)
{
for (int 1 =
cout << "
}

n,; i > 0; i--) {
" <L n;

VAN

Iterative code is usually more efficient than tail recursive code:
Recursion requires more overhead due to function calls (Stack frame

Then why still using recursion?

Recursion: readable code, easyto understand, well suit divide-and-

conquer algorithms

Fibonacci number using loop?

]

N\
Same time complexity,
) but this one is better!

23

Math Review: Proof & Recursion

Recursive function calls

M() A() B() C() D() E()
{ { { { { {
A() || ... B() D() || ... F()
A() } } E() ||} E()
B() } }
C()
}
» time
M
8 2
S A A B C
=1 S X
E B D
S B F E

Math Review: Proof & Recursion

Recursion: example

* Tower of Hanoi
* Goal:
* Move all disks from peg A to peg B using peg C

* Rules:
e Move one disk at a time

* Larger disks cannot be placed above smaller disks

* Question: What is the minimum number of moves necessary to solve
the problem?

Image credit: https://e

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Math Review: Proof & Recursion

Recursion: example

* A Recursive Algorithm: Find the base case -> N=1
* Move the top n-1 disks, “recursively”, from A to C (using B)
* Move nth disk (i.e., largest & bottom-most in A) from A to B
* Move all the n-1disks, “recursively”, from C to B (using A)

(2) Move (1, A, B)

(3) Move (n-1, C, B)

(1) Move (n-1, A, C)

26

Math Review: Proof & Recursion

Recursion: example

AllLlL

N e

LL11d

Image credit:

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/

Math Review: Proof & Recursion

Recursion: example

* Pseudocode
* Move (n, A, B, Q)
* PRE:ndisks onA; B and C unaffected
* POST: ndisks on B; A and C unaffected
* BEGIN
* [Fn=0THENRETURN
* Move (n-1,A,C,B)
* Move nth disk from A to B directly
* Move (n-1,C,B,A)
* END

Math Review: Proof & Recursion

Recursion: example

* Define: T(n)= minimum required number of moves
* Analysis: starts with T(1)=1
e T(n)=2T(n-1)+1
* Solving this: T(n)=2"-12 (how?)
* Inthe original Tower of Hanoi problem, n=8 & so T(n)=255

* ForTower of Brahma, n=64
« 2%%.1 moves made by a priest in a temple

* Assuming each move takes 1 second, this would take 5,000,000,000 centuries to
complete

* Online game: https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

Math Review: Proof & Recursion

Summary

* Floors, ceilings, exponents, logarithms, series, and modular arithmetic
* Proofs by mathematical induction, counterexample and contradiction
* Recursion and solving recurrences

* Tools to help us analyze the performance of our data structures and
algorithms

30

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Proofs
	Slide 3: Proof by induction
	Slide 4: Inductive proof: example
	Slide 5: Inductive proof: example
	Slide 6: Inductive proof: example
	Slide 7: Proof by counterexample
	Slide 8: Counterexample: example
	Slide 9: Counterexample: example
	Slide 10: Proof by contradiction
	Slide 11: Contradiction: example
	Slide 12: Contradiction: example
	Slide 13: Recurrence V.S. recursion
	Slide 14: Basic rules of recursion
	Slide 15: Recursion: example
	Slide 16: Recursion: example
	Slide 17: Running time for Fibonacci(n)?
	Slide 18: Solving recurrences
	Slide 19: Solving recurrences
	Slide 20: Lower bound for Fibonacci(n)?
	Slide 21: Recurrence V.S. recursion
	Slide 22: Tail recursion  iteration
	Slide 23: Example: print 1 to n
	Slide 24: Recursive function calls
	Slide 25: Recursion: example
	Slide 26: Recursion: example
	Slide 27: Recursion: example
	Slide 28: Recursion: example
	Slide 29: Recursion: example
	Slide 30: Summary

