
CPTS 223 Advanced Data
Structure C/C++

Math Review: Proof & Recursion

1

Proofs
Math Review: Proof & Recursion

WSU

• What do we want to prove?
• Properties of a data structure always hold for all operations

• Algorithm’s running time / memory will never exceed some threshold

• Algorithm will always be correct

• Algorithm will always terminate

• Proof techniques
• Proof by induction

• Proof by counterexample

• Proof by contradiction

2

Proof by induction

WSU

• Goal: Prove some hypothesis is true

• Three-step process
• Base case: Show hypothesis is true for some initial conditions (k=1)

• Inductive hypothesis: Assume hypothesis is true for all cases ≤ k

• Inductive step: Show hypothesis is true for next larger value (typically k+1)

3

Math Review: Proof & Recursion

Inductive proof: example

WSU

• Prove arithmetic series
• σ𝑖=0

𝑁 𝑖 = 𝑁(𝑁 + 1)/2

• Base case: show it is true for 𝑁 = 0

• σ𝑖=0
𝑁 𝑖 = 0 ⇔

𝑁 𝑁+1

2
= 0

• Inductive hypothesis: assume it is true for all 𝑁 ≤ 𝑘: σ𝑖=0
𝑘 𝑖 =

𝑘 𝑘+1

2

• Inductive step: generalize to 𝑘 + 1 to see whether σ𝑖=0
𝑘+1 𝑖 =

(𝑘+1) 𝑘+2

2

4

Math Review: Proof & Recursion

Inductive proof: example

WSU

• Prove arithmetic series
• σ𝑖=0

𝑁 𝑖 = 𝑁(𝑁 + 1)/2

• Base case: show it is true for 𝑁 = 0

• σ𝑖=0
𝑁 𝑖 = 0 ⇔

𝑁 𝑁+1

2
= 0

• Inductive hypothesis: assume it is true for all 𝑁 ≤ 𝑘: σ𝑖=0
𝑘 𝑖 =

𝑘 𝑘+1

2

• Inductive step: generalize to 𝑘 + 1 to see whether σ𝑖=0
𝑘+1 𝑖 =

(𝑘+1) 𝑘+2

2

• σ𝑖=0
𝑘+1 𝑖 = σ𝑖=0

𝑘 𝑖 + 𝑘 + 1 =
𝑘 𝑘+1

2
+ 𝑘 + 1 = 𝑘 + 1

𝑘

2
+ 1 =

𝑘+1 𝑘+2

2

5

Math Review: Proof & Recursion

Inductive proof: example

WSU

• More examples:
• Prove the geometric series

• σ𝑖=0
𝑁 𝐴𝑖 =

𝐴𝑁+1−1

𝐴−1

• Prove that the number of nodes 𝑁 in a complete binary tree of depth 𝐷 is
2𝐷+1 − 1

6

Math Review: Proof & Recursion

Proof by counterexample

WSU

• Prove hypothesis is not true by giving an example that does not hold
• Example: how to prove 2𝑁 > 𝑁2 ?

• Proof by letting 𝑁 = 2 (or 3 or 4)

7

Math Review: Proof & Recursion

Counterexample: example

WSU

• Given N cities and costs for traveling between each pair of cities, a
“least-cost tour” is one which visits every city exactly once with the
least cost

• Hypothesis: Any sub-path within any least-cost tour will also be a least
cost tour for those cities included in the sub-path.

• Is this hypothesis true?

8

Math Review: Proof & Recursion

least-cost tour

hypothesis: sub-path: least tour?

start city end city

Counterexample: example

WSU

• Counterexample
• Cost (A→B→C→D) = 40: least cost tour for {A, B, C, D}

• What is the least cost tour for {A, B, C}?

• Cost (A→B→C) = 30

• Cost (A→C→B) = 20

9

Math Review: Proof & Recursion

A B

D C

20

10

10100
10

100

not the least
cost tour

the least
cost tour

Proof by contradiction

WSU

• Start by assuming that the hypothesis is false

• Show this assumption could lead to a contradiction (i.e., some known
property is violated)

• Therefore, hypothesis must be true

10

Math Review: Proof & Recursion

premises

conclusion

universe universe

premises⇒conclusion premises⇏conclusion
complement

Contradiction: example

WSU

• Single pair shortest path problem
• Given N cities and costs for traveling

 between each pair of cities, find the least-cost path to go from city X to city Y

• Hypothesis: A least-cost path from X to Y contains least-cost paths
from X to every city on the path
• E.g., if X→A → C → B → Y is a least-cost path from X to Y, then

• X → A → C → B must be a least-cost path from X to B

• X → A → C must be a least-cost path from X to C

• X → A must be a least-cost path from X to A

• Conclusion: Least cost paths should contain smaller least cost paths
starting at the source

11

Math Review: Proof & Recursion

X C B

A

Y

Hypothesis: P=X→A→C→B→Y is least-cost

Contradiction: example

WSU

• Let P be a least-cost path from X to Y

• Now, assume that the hypothesis is false:
• ==> there exists C along X->Y path, such that, there is a better path from X to C

than the one in P

• ==> So we could replace the subpath from X to C in P with this less-cost path, to
create a new path P’ from X to Y

• ==> Thus we now have a better path from X to Y

• i.e., cost(P’) < cost(P)

• ==> But this violates the fact that P is a least-cost path from X to Y (hence a
contradiction!)

• Therefore, the original hypothesis must be true
12

Math Review: Proof & Recursion

X C B

A

Y

D

Hypothesis: P=X→A→C→B→Y is least-cost

P’=X→A→D→B→Y

Recurrence V.S. recursion

WSU

• A recursive function or a recursive formula is defined in terms of itself

• Example:

13

Math Review: Proof & Recursion

𝑛! =

1 if 𝑛 = 0

𝑛 ∗ 𝑛 − 1 ! if 𝑛 > 0

Mathematical
recurrence

Factorial (n)

{

if (n = 0)

 then return 1;

else

 return (n *

Factorial (n-1));

}

Recursion (code)

Basic rules of recursion

WSU

• Base cases
• Must always have some base cases, which can be solved without recursion

• Making progress
• Recursive calls must always make progress toward a base case

• Design rule
• Assume all recursive calls work

• Compound interest rule
• Try not to duplicate work by solving the same instance of a problem in separate

recursive calls

14

Math Review: Proof & Recursion

Recursion: example

WSU

• Fibonacci numbers
• F(0) = 1

• F(1) = 1

• F(n) = F(n-1) + F(n-2)

15

Math Review: Proof & Recursion

Fibonacci (n)

{

 if (n ≤ 1)

 then return 1

 else return (Fibonacci (n-1) + Fibonacci (n-2))

}

Recursion: example

WSU

• Computation tree for: Fibonacci (5)

16

Math Review: Proof & Recursion

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Runtime for the recursive code
1. proportional to the size of the tree
 (and that is a lot wasteful)
2. (#nodes for Depth D) ≤ 2^(D+1) – 1
3. n=D+1

0

1

2

3

4 (D=4)

Binary
tree

Running time for Fibonacci(n)?

WSU

• Show that the running time 𝑇(𝑛) of Fibonacci(n) is exponential in n,
Depth 𝐷 = 𝑛 − 1

• This only gives an upper bound for 𝑇(2𝑛)
• We also need to prove that T(n) is at least exponential

• Use mathematical induction
• A tighter upper bound: 𝑇(𝑛) < (5/3)𝑛for n>=1

17

Math Review: Proof & Recursion

Solving recurrences

WSU

• Example:

• How much time does Algo1 take?
• Express time as a function of n (input size)

• Let T(n) be the time taken by Algo1 on an input size n

• Then: T(n) = 1 + T(n/2) + T(n/2)

 = 2T(n/2) + 1
18

Math Review: Proof & Recursion

Algo1(A,1,n)

 // A is an integer array of size n

 if(n<2) return;

 x = floor(n/2);

 Algo1(A,1,x);

 Algo1(A,x+1,n);

Solving recurrences

WSU

• Recurrence:
• T(n) = 2T(n/2) + 1

• T(1) = 1

• Solution (via geometric sequence)
 T(n) = 2T(n/2) + 1

 = 4T(n/4) + 2+ 1

 = 8 T(n/8) + (4+2+1)

 = …… (K steps)

 = 2𝐾 𝑇 𝑛/2𝐾 + σ𝑘=0
𝐾−1 2𝑘

 = n T(1) + n-1

 = 2n-1 [Closed-form]
19

Math Review: Proof & Recursion

Expand K times
such that 𝑛/2𝐾 = 1

Lower bound for Fibonacci(n)?

WSU

• T(n) = T(n-1) + T(n-2)

• Assume T(n-1) ~ T(n-2), approximation
= 2T(n-2)
= 2*(2T(n-4))
= 4T(n-4)
= 8T(n-6)
= 2k * T(n - 2k)

• For termination, n = 2k, k = n/2
• T(n) = 2^(n/2) * T(0)

T(n) = O(2^(n/2))

20

Math Review: Proof & Recursion

Recurrence V.S. recursion

WSU

• Recurrence vs. Recursion
• A recurrence need not always be implemented using recursion

• How?

21

Math Review: Proof & Recursion

Tail recursion → iteration

WSU

22

Math Review: Proof & Recursion

M

A

A

A

M

A A A

A(n){

 …

 A(n-1)

}

tail recursive code

A(n){

 for (i=n; i>=0; i--)

 {……}

}

while or for loop

The result of A(n-1) is
NOT needed/used in A(n)

Example: print 1 to n

WSU

23

Math Review: Proof & Recursion

void print(int n)

{

 if (n < 0) return;

 cout << " " << n;

 print(n-1);

}

void print(int n)

{

 for (int i = n; i > 0; i--) {

 cout << " " << n;

 }

}

Same time complexity,
but this one is better!

Iterative code is usually more efficient than tail recursive code:
Recursion requires more overhead due to function calls (Stack frame)

Then why still using recursion?
Recursion: readable code, easy to understand, well suit divide-and-
conquer algorithms

Fibonacci number using loop?

Recursive function calls

WSU

24

Math Review: Proof & Recursion

M()

{

 A()

 A()

 B()

 C()

}

A()

{

 ……

}

B()

{

 B()

}

C()

{

 D()

 E()

}

D()

{

 ……

}

E()

{

 F()

 E()

}

F()

{

 ……

} M

A A B C

B

B

D E

F E

M

A B CA

B

B

D E

F E

time

ca
ll

se
q

u
en

ce

Recursion: example

WSU

• Tower of Hanoi
• Goal:

• Move all disks from peg A to peg B using peg C

• Rules:
• Move one disk at a time

• Larger disks cannot be placed above smaller disks

• Question: What is the minimum number of moves necessary to solve
the problem?

25

Math Review: Proof & Recursion

A B C

Image credit: https://en.wikipedia.org/wiki/Tower_of_Hanoi#/media/File:Tower_of_Hanoi.jpeg

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Recursion: example

WSU

• A Recursive Algorithm: Find the base case -> N=1
• Move the top n-1 disks, “recursively”, from A to C (using B)

• Move nth disk (i.e., largest & bottom-most in A) from A to B

• Move all the n-1 disks, “recursively”, from C to B (using A)

26

Math Review: Proof & Recursion

A

B

C(1) Move (n-1, A, C)

(2) Move (1, A, B)

(3) Move (n-1, C, B)

Recursion: example

WSU

27

Math Review: Proof & Recursion

Image credit: https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/

Recursion: example

WSU

• Pseudocode
• Move (n, A, B, C)

• PRE: n disks on A; B and C unaffected

• POST: n disks on B; A and C unaffected

• BEGIN

• IF n=0 THEN RETURN

• Move (n-1, A,C,B)

• Move nth disk from A to B directly

• Move (n-1,C,B,A)

• END

28

Math Review: Proof & Recursion

Recursion: example

WSU

https://www.mathsisfun.com/games/towerofhanoi.html

• Define: T(n)= minimum required number of moves

• Analysis: starts with T(1)=1
• T(n) = 2T(n-1)+1

• Solving this: T(n)=2𝑛-1 (how?)

• In the original Tower of Hanoi problem, n=8 & so T(n)=255

• For Tower of Brahma, n=64
• 264-1 moves made by a priest in a temple

• Assuming each move takes 1 second, this would take 5,000,000,000 centuries to
complete

• Online game: https://www.mathsisfun.com/games/towerofhanoi.html 29

Math Review: Proof & Recursion

https://www.mathsisfun.com/games/towerofhanoi.html

Summary

WSU

• Floors, ceilings, exponents, logarithms, series, and modular arithmetic

• Proofs by mathematical induction, counterexample and contradiction

• Recursion and solving recurrences

• Tools to help us analyze the performance of our data structures and
algorithms

30

Math Review: Proof & Recursion

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Proofs
	Slide 3: Proof by induction
	Slide 4: Inductive proof: example
	Slide 5: Inductive proof: example
	Slide 6: Inductive proof: example
	Slide 7: Proof by counterexample
	Slide 8: Counterexample: example
	Slide 9: Counterexample: example
	Slide 10: Proof by contradiction
	Slide 11: Contradiction: example
	Slide 12: Contradiction: example
	Slide 13: Recurrence V.S. recursion
	Slide 14: Basic rules of recursion
	Slide 15: Recursion: example
	Slide 16: Recursion: example
	Slide 17: Running time for Fibonacci(n)?
	Slide 18: Solving recurrences
	Slide 19: Solving recurrences
	Slide 20: Lower bound for Fibonacci(n)?
	Slide 21: Recurrence V.S. recursion
	Slide 22: Tail recursion  iteration
	Slide 23: Example: print 1 to n
	Slide 24: Recursive function calls
	Slide 25: Recursion: example
	Slide 26: Recursion: example
	Slide 27: Recursion: example
	Slide 28: Recursion: example
	Slide 29: Recursion: example
	Slide 30: Summary

