

CPTS 223 Advanced Data Structure C/C++

Math Review: Proof & Recursion

Proofs

- What do we want to prove?
 - Properties of a data structure always hold for all operations
 - Algorithm's running time / memory will never exceed some threshold
 - Algorithm will always be correct
 - Algorithm will always terminate
- Proof techniques
 - Proof by induction
 - Proof by counterexample
 - Proof by contradiction

Proof by induction

- Goal: Prove some hypothesis is true
- Three-step process
 - Base case: Show hypothesis is true for some initial conditions (k=1)
 - Inductive hypothesis: Assume hypothesis is true for all cases $\leq k$
 - Inductive step: Show hypothesis is true for next larger value (typically k+1)

Inductive proof: example

- Prove arithmetic series
 - $\sum_{i=0}^{N} i = N(N+1)/2$
- Base case: show it is true for N = 0

•
$$\sum_{i=0}^{N} i = 0 \Leftrightarrow \frac{N(N+1)}{2} = 0$$

- Inductive hypothesis: assume it is true for all $N \le k$: $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$
- Inductive step: generalize to k + 1 to see whether $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$

Inductive proof: example

- Prove arithmetic series
 - $\sum_{i=0}^{N} i = N(N+1)/2$
- Base case: show it is true for N = 0

•
$$\sum_{i=0}^{N} i = 0 \Leftrightarrow \frac{N(N+1)}{2} = 0$$

- Inductive hypothesis: assume it is true for all $N \le k$: $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$
- Inductive step: generalize to k + 1 to see whether $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$

•
$$\sum_{i=0}^{k+1} i = \sum_{i=0}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1) = (k+1)\left(\frac{k}{2} + 1\right) = \frac{(k+1)(k+2)}{2}$$

Inductive proof: example

- More examples:
 - Prove the geometric series

•
$$\sum_{i=0}^{N} A^i = \frac{A^{N+1}-1}{A-1}$$

• Prove that the number of nodes N in a complete binary tree of depth D is $2^{D+1} - 1$

Proof by counterexample

- Prove hypothesis is not true by giving an example that does not hold
 - Example: how to prove $2N > N^2$?
 - Proof by letting N = 2 (or 3 or 4)

Counterexample: example

- Given N cities and costs for traveling between each pair of cities, a "least-cost tour" is one which visits every city exactly once with the least cost
- Hypothesis: Any sub-path within any least-cost tour will also be a least cost tour for those cities included in the sub-path.
- Is this hypothesis true?

Counterexample: example

- Counterexample
 - Cost $(A \rightarrow B \rightarrow C \rightarrow D) = 40$: least cost tour for $\{A, B, C, D\}$

Proof by contradiction

- Start by assuming that the hypothesis is false
- Show this assumption could lead to a contradiction (i.e., some known property is violated)
- Therefore, hypothesis must be true

• Single pair shortest path problem

Given N cities and costs for traveling

Hypothesis: $P=X \rightarrow A \rightarrow C \rightarrow B \rightarrow Y$ is least-cost

- between each pair of cities, find the least-cost path to go from city X to city Y
- Hypothesis: A least-cost path from X to Y contains least-cost paths from X to every city on the path
 - E.g., if $X \rightarrow A \rightarrow C \rightarrow B \rightarrow Y$ is a least-cost path from X to Y, then
 - $X \rightarrow A \rightarrow C \rightarrow B$ must be a least-cost path from X to B
 - $X \rightarrow A \rightarrow C$ must be a least-cost path from X to C
 - $X \rightarrow A$ must be a least-cost path from X to A
- Conclusion: Least cost paths should contain smaller least cost paths starting at the source

B

Hypothesis: $P=X \rightarrow A \rightarrow C \rightarrow B \rightarrow Y$ is least-cost

 $P'=X \rightarrow A \rightarrow D \rightarrow B \rightarrow Y$

D

Contradiction: example

- Let P be a least-cost path from X to Y
- Now, assume that the hypothesis is false:

==> there exists C along X->Y path, such that, there is a better path from X to C than the one in P

- ==> So we could replace the subpath from X to C in P with this less-cost path, to create a new path P' from X to Y
- ==> Thus we now have a better path from X to Y
- i.e., cost(P') < cost(P)
- ==> But this violates the fact that P is a least-cost path from X to Y (hence a contradiction!)
- Therefore, the original hypothesis must be true

Recurrence V.S. recursion

- A recursive function or a recursive formula is defined in terms of itself
- Example:

$$n! = \begin{cases} 1 \text{ if } n = 0 \\ n * (n - 1)! \text{ if } n > 0 \end{cases}$$
Mathematical recurrence

Basic rules of recursion

- Base cases
 - Must always have some base cases, which can be solved without recursion
- Making progress
 - Recursive calls must always make progress toward a base case
- Design rule
 - Assume all recursive calls work
- Compound interest rule
 - Try not to duplicate work by solving the same instance of a problem in separate recursive calls

- Fibonacci numbers
 - F(o) = 1
 - F(1) = 1
 - F(n) = F(n-1) + F(n-2)

```
Fibonacci (n)
{
    if (n ≤ 1)
        then return 1
    else return (Fibonacci (n-1) + Fibonacci (n-2))
```


• Computation tree for: Fibonacci (5)

Running time for Fibonacci(n)?

- Show that the running time T(n) of Fibonacci(n) is exponential in n, Depth D = n 1
- This only gives an upper bound for $T(2^n)$
 - We also need to prove that T(n) is at least exponential
- Use mathematical induction
 - A tighter upper bound: $T(n) < (5/3)^n$ for n>=1

Solving recurrences

- How much time does Algo1 take?
 - Express time as a function of n (input size)
- Let T(n) be the time taken by Algo1 on an input size n
- Then: T(n) = 1 + T(n/2) + T(n/2)
 - = 2T(n/2) + 1

Solving recurrences

- Recurrence:
 - T(n) = 2T(n/2) + 1
 - T(1) = 1
- Solution (via geometric sequence)

Lower bound for Fibonacci(n)?

- T(n) = T(n-1) + T(n-2)
- Assume T(n-1) ~ T(n-2), approximation
 = 2T(n-2)
 = 2*(2T(n-4))
 - = 4T(n-4)
 - = 8T(n-6)
 - = 2k * T(n 2k)
- For termination, n = 2k, k = n/2
 - $T(n) = 2^{(n/2)} * T(o)$ $T(n) = O(2^{(n/2)})$

Recurrence V.S. recursion

- Recurrence vs. Recursion
 - A recurrence need not always be implemented using recursion
 - How?

Example: print 1 to n

Recursion requires more overhead due to function calls (Stack frame)

Same time complexity, but this one is better!

Then why still using recursion? Recursion: readable code, easy to understand, well suit divide-andconquer algorithms

Fibonacci number using loop?

Recursive function calls

- Tower of Hanoi
 - Goal:
 - Move all disks from peg A to peg B using peg C
 - Rules:
 - Move one disk at a time
 - Larger disks cannot be placed above smaller disks
- Question: What is the minimum number of moves necessary to solve the problem?

- A Recursive Algorithm: Find the base case -> N=1
 - Move the top n-1 disks, "recursively", from A to C (using B)
 - Move nth disk (i.e., largest & bottom-most in A) from A to B
 - Move all the n-1 disks, "recursively", from C to B (using A)

- Pseudocode
 - Move (n, A, B, C)
 - PRE: n disks on A; B and C unaffected
 - POST: n disks on B; A and C unaffected
 - BEGIN
 - IF n=o THEN RETURN
 - Move (n-1, A,C,B)
 - Move nth disk from A to B directly
 - Move (n-1,C,B,A)
 - END

- Define: T(n)= minimum required number of moves
- Analysis: starts with T(1)=1
 - T(n) = 2T(n-1)+1
- Solving this: $T(n)=2^{n}-1$ (how?)
- In the original Tower of Hanoi problem, n=8 & so T(n)=255
- For Tower of Brahma, n=64
 - 2⁶⁴-1 moves made by a priest in a temple
 - Assuming each move takes 1 second, this would take 5,000,000,000 centuries to complete
- Online game: <u>https://www.mathsisfun.com/games/towerofhanoi.html</u>

Summary

- Floors, ceilings, exponents, logarithms, series, and modular arithmetic
- Proofs by mathematical induction, counterexample and contradiction
- Recursion and solving recurrences
- Tools to help us analyze the performance of our data structures and algorithms