
CPTS 223 Advanced Data
Structure C/C++

Graph

1

Overview
Graph

WSU

• Definitions

• Terminology

• Graph representation

• Topological sort

• Shortest-path algorithms
• Unweighted shortest path

• Weighted shortest path: Dijkstra’s algorithm

2

Single-source shortest
path problem

Graph and graph algorithms
Graph

WSU

• What is a graph?
• A graph G = (V, E) consists of a set of vertices V, and a set of edges E.

• Each edge is a pair (v, w), where v, w ∈ V

• Graph algorithm?
• An algorithm designed to work with data kept in a graph structure

3

Both v and w are vertices

Where have we seen graphs?
Graph

WSU

4

A0 A1 A2 A3 A4

node

data next pointer null

A

B C D E F G

H I J K L M N

P Q

Linked list

Tree:
Directed acyclic
graph (DAG)

Hash table

Big-O for graphs
Graph

WSU

• In trees, heaps, hashing, stacks
• Number of updates or operations to complete algorithm

• Push == add node to head of list

• Insert (tree) == traversal to bottom of tree, then node create & update

• In sorting:
• Number of swaps/moves and comparisons done

• For graphs, big-O is based on two things:
• Edges traversed

• nodes (vertices) inspected

5

|E| == number of edges
|V| == number of vertices

A traversal graph example
Graph

WSU

6

Given a map of WSU and
surrounding area, how to get
from one place to another?

A traversal graph example
Graph

WSU

7

We now have a set of vertices:
{A, B, C, D, E, F, G, H, I, J}

A traversal graph example
Graph

WSU

8

We have a set of edges connecting
the vertices

A traversal graph example
Graph

WSU

9

Edges can be assigned weights (or
costs)

5
6

7

8

9

2

6

4

3

6

A traversal graph example
Graph

WSU

10

Let us strip away irrelevant details

5
6

7

8

9

2

6

4

3

6

A

B

C

D

E F

G H

I

J

A traversal graph example
Graph

WSU

11

Let us strip away irrelevant details

5
6

7

8

9

2

6

4

3

6

A

B

C

D

E F

G H

I

J

G = (V, E): a graph
V: a set of vertices
E: a set of edges

Graph representation: how?
Graph

WSU

• Determining what you need to represent

• Find points of interest

• How can an object traverse between those points?
• Is it on the physical world?

• Once you have the nodes and a way to connect them as edges, you
have a graph

12

Terminology in graphs
Graph

WSU

• Due to their flexibility graphs have many terms to keep track of

• Ensuring you are fluent in the terminology is a huge part of being able
to converse, reason about, and leverage graph algorithms

• Be prepared to learn terms as we go along

13

Undirected graphs
Graph

WSU

• Edges do not have a front and back,
normally shown with a line (no arrow)

• Edges can be traversed in either
direction

• Think of it being the difference
between one-way streets and
two-way streets

• Both nodes are adjacent to each
other

• (B, D) = (D, B)

14

Directed graphs
Graph

WSU

• Directed graphs are when the edges are “directed.”

• This means they have a front and a back, normally shown as an arrow

• (v, w) ∈ E
• Edge from v to w

• (1, 2) ≠ (2, 1)

15

Graphs: adjacency
Graph

WSU

• Vertex w is adjacent to v if and only if (v, w) ∈ E
• This means you can traverse the edge from v to w

• When using undirected edges, (v, w) means (w, v) so w and v are both
adjacent to each other

16

Undirected graphs:
B is adjacent to D
D is adjacent to B

Directed graphs:
D is adjacent to C

Weight or “cost” of an edge
Graph

WSU

• Edges can carry a “cost” to traverse them
• For example, two intersections are connected and the cost is how many meters

long the connecting road is

• What the cost means is entirely dependent upon what the graph is representing

17

5

6 7

8

9

2

6

4

3

6

A

B C

D

E F

G H

I

J

Degree of a vertex
Graph

WSU

• The number of vertices adjacent to a vertex

• Indegree is the number of incoming edges

• Outdegree is the number of outgoing edges

18

Paths
Graph

WSU

• A path is a sequence of vertices
• w_1 , w_2 , w_3 , . . . , w_N such that (w_i , w_{i+1}) ∈ E for 1 ≤ i < N

• The length of a path is the number of edges on the path (not vertices)

• The path can go from a vertex to itself (a special case)
• If that path has no edges, it has a length of zero.

• A path can be (v, v): a loop
• Normally loops don’t happen in most algorithm traversals, but can happen

• Simple paths: all vertices are distinct (no repeated vertices)
• Exception: First and last can be the same if it’s a path and a loop.

19

Cycles
Graph

WSU

• Cycle in a graph is a non-
empty path in which all
vertices are distinct except the
first and last one
• 0 → 1 → 2 → 0

• Directed cycle: cycle in a
directed graph
• Cycle 1: 0 → 1 → 2 → 3 → 0

• Cycle 2: 2 → 4 → 2

• Directed Acyclic Graph
• Directed graphs with no cycles

20

Connected and disconnected
Graph

WSU

• An undirected graph is a connected graph if there is a path from every
vertex to every other vertex

21

This graph becomes
disconnected when the
dashed edge is removed

Connected and disconnected
Graph

WSU

• A directed graph is weakly connected if the underlying undirected
graph is a connected graph

• A directed graph is strongly connected if it contains a directed path
from x to y (and from y to x) for every pair of vertices (x, y)

22

1

3 2

1

3 2

Complete graph
Graph

WSU

• When there is an edge between every pair of vertices

23

Graph: examples
Graph

WSU

• Airport connections

• Road trip route planning

• Traffic flow

• Networking

• LinkedIn

• Course prerequisites: a DAG

• What else?

24

Storing and representing graphs
Graph

WSU

• Adjacency matrix
• A 2-dimension array where each dimension contains all vertices

• For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is
false

• If edges have weights, set A[u][v] equal to the weight and use either a very large
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

25

Weights in adjacency matrix
Graph

WSU

26

Storing and representing graphs
Graph

WSU

• Adjacency matrix
• A 2-dimension array where each dimension contains all vertices

• For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is
false

• If edges have weights, set A[u][v] equal to the weight and use either a very large
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

• Disadvantage?

• Requires Θ(|V|^2) space

• only appropriate if |E| = Θ(|V|^2)

• Wasteful if |E| << O(|V|^2)

27

Dense v.s. sparse
Graph

WSU

• Most graphs are sparse
• This means |E| << |V|

• Better solution for sparse graphs is an adjacency list representation
• Keep a list of all adjacent vertices for each vertex

• Space requirement becomes O(|E| + |V|)

• Instead of Θ(|V|^2) with the matrix

• Weights can be kept with edges in adjacency list

• Standard way to represent graphs

28

Dense v.s. sparse
Graph

WSU

29

v.s.

v.s.

Topological sort
Graph

WSU

• Topological sort is an ordering of vertices in
a directed acyclic graph, such that if there is
a path from v_i to v_j , then v_j appears
after v_i in the ordering

• Not work if there is a cycle in the graph

• Does not guarantee a unique ordering

• Used for deciding scheduling of work units
• Edges represent the dependency of work units

• Only those with an indegree of 0 can be “done”
next

30

Topographical sorting example
Graph

WSU

• {v1 , v2 , v5 , v4 , v3 , v7 , v6} and
{v1 , v2 , v5 , v4 , v7 , v3 , v6} are
both valid topological
orderings

1. Find node with no “in-edges”
1) In-degree of zero

2) Called a “source node”

2. Print out (process) node &&
remove it (and edges implicitly)
from graph

• 3) Repeat

31

Start from v1:
in-degree = 0

Topographical sorting example
Graph

WSU

32

Delete v2

Topographical sorting example
Graph

WSU

33

Delete v5

Topographical sorting example
Graph

WSU

34

Delete v4

Topographical sorting example
Graph

WSU

35

Delete v7
(or v3)

Topographical sorting example
Graph

WSU

36

Delete v3

Topographical sorting example
Graph

WSU

37

Delete v3

Delete order: v1, v2, v5, v4, v7, v3, v6 → topographical sorting order

WSU

38

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

Implementation:
Save nodes in a heap
by their in-degrees

WSU

39

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin
and update
in-degrees

Implementation:
Save nodes in a heap
by their in-degrees

WSU

40

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin
and update
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

Implementation:
Save nodes in a heap
by their in-degrees

WSU

41

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin
and update
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

Implementation:
Save nodes in a heap
by their in-degrees

WSU

42

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin
and update
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

Implementation:
Save nodes in a heap
by their in-degrees

WSU

43

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin
and update
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

V3 - 0 V6 - 1

Implementation:
Save nodes in a heap
by their in-degrees

WSU

44

Start from v1:
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin
and update
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

V3 - 0 V6 - 1

V6 - 0

Implementation:
Save nodes in a heap
by their in-degrees

WSU

45

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

V3 - 0 V6 - 1

V6 - 0

This is the output of
topological sort

Application of topo sort
Graph

WSU

46

Application of topo sort
Graph

WSU

47

Shortest path algorithms
Graph

WSU

• How to go across graph at the lowest cost from A to B?
• “Short” can be defined in lots of ways - entirely application dependent

• This is where the cost of an edge truly starts to matter

48

What is the shortest
path from 1 to 3?

Shortest path: formal definition
Graph

WSU

• Single-source shortest-path problem:
• Given as input a weighted graph, G = (V, E), and a distinguished vertex s, find the

shortest weighted path from s to every other vertex in G.

• Cost of a path is:
• Associated with each edge (v_i , v_j) is a cost c{i,j} to traverse the edge. The cost

of a path from V_1 to V_N:

49

Shortest path: positive edges
Graph

WSU

• v1 to v6?

50

Shortest path: positive edges
Graph

WSU

• v1 to v6?
• v1 → v4 → v7 → v6

• Sum cost: 6

51

Shortest path: negative edges
Graph

WSU

• Go: v5 -> v4
• Takes 1 right?

• What about:
 v5 -> v4 -> v2 -> v5 -> v4?
Perhaps you go around again?

• Extreme case: If I add 1 more edge
(v5, v2), cost: -5, will you ever find a
shortest path for v2 -> v5?

• When a negative cycle exists, shortest
paths are not defined!
 -- Cost can go to -INF

52

Unweighted shortest path
Graph

WSU

• Find shortest path from a vertex s to all other vertices

• Only care about number of edges in path, not their costs (cost == 1)
1. Mark starting node (s) with length 0

2. Look at all adjacent vertices with distance 1 from s

3. Repeat for all vertices at distance 2, then 3, etc

4. Once all nodes are marked, you are finished

• This is a breadth first search (BFS): the network is examined in layers,
starting from a root node. Basically, level order traversal for trees

• Final result is all vertices are marked with distance from initial (s)

• Done in O(|E| + |V|) time

53

WSU

54

Find shortest path from a vertex s to all other vertices

Choose s
to be v3

WSU

55

Initialize the distance of
all vertices as INFINITY

Initialize the distance of s as 0

WSU

56

Largest distance = |V|

WSU

57

Largest distance = |V|

v: known and at
current distance

WSU

58

v: known and at
current distance

Update adjacent
vertices

Set to known

Largest distance = |V|

WSU

59

v: known and at
current distance

Update adjacent
vertices

Set to known

Largest distance = |V|

WSU

60

v: known and at
current distance

Update adjacent
vertices

Set to known

Largest distance = |V|

Weighted shortest path
Graph

WSU

• BFS cannot solve this issue
• A path with more edges may have lower cost

• Dijkstra’s Algorithm takes into account edge weights for finding paths

• Don’t just keep the raw distance, but sum up the cost to get there

• Greedy algorithm - follow lowest cost path first every time.
• Queue is sorted by shortest path of the nodes not explored so far (priority queue

time!)

• Again, keep a table of the vertices and their costs. Start them at INF
• If a node popped off of the queue shortens another node’s path

then benefits cascade down the chain automagically

• Heavily used in network routing and shortest path network choices

61

General problem: setting weight=1 for each edge
→ unweighted shortest path problem

Weighted shortest path
Graph

WSU

• Algorithm

• Put all vertices in a priority queue and the initial distance is INF except
the source

• Select vertex v from the queue which has the smallest distance to v
(denoted by d_v) among unknown vertices

• Declares shortest path from s to v is known

• For each adjacent node (denoted by w) of v

• If unweighted graph:

• set d_w = d_v + 1 (if d_w = INF, aka not visited yet), thus
this lowers value of d_w if v was shorter path

• If weighted graph:

• Set d_w = d_v + c{v,w} (if this can reduce dw) 62

Weighted shortest path
Graph

WSU

• 1. Initialize distances according to the algorithm.

• All vertexes are stored in a min-heap (priority queue) according to
the current distance to A. The initial distance is INF

63

Find the shortest path:
A → B

Weighted shortest path
Graph

WSU

• 2. Pick first node and calculate distances to adjacent nodes.

64

Weighted shortest path
Graph

WSU

• 3. Pick next node with minimal distance (deleteMin()); repeat adjacent
node distance calculations (decrease()).

65

Weighted shortest path
Graph

WSU

• 3. Pick next node with minimal distance (deleteMin()); repeat adjacent
node distance calculations (decrease()).

66

Weighted shortest path
Graph

WSU

• 4. Repeat Step 3, until no unknown vertices left in the queue

67

Code for Dijkstra’s algorithm
Graph

WSU

68

General problem: setting weight=1 for each edge
→ unweighted shortest path problem

Code for Dijkstra’s algorithm
Graph

WSU

69

Initialization

Expand to vertices layer by
layer to the farthest one

Dijkstra’s summary
Graph

WSU

• Shortest path algorithms are incredibly valuable

• Dijkstra’s Algorithm is fast and efficient
• By default, cannot work if there’s a negative cycle in the graph

• Works in O(|E| + |V|log |V|) time

• Explore all |E| edges

• Each round in the loop causes a percolation-up in the priority queue (minheap) of |V|
vertices - or log |V|

• O(|E|) space needed to store all of the edges in the queue

70

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Graph and graph algorithms
	Slide 4: Where have we seen graphs?
	Slide 5: Big-O for graphs
	Slide 6: A traversal graph example
	Slide 7: A traversal graph example
	Slide 8: A traversal graph example
	Slide 9: A traversal graph example
	Slide 10: A traversal graph example
	Slide 11: A traversal graph example
	Slide 12: Graph representation: how?
	Slide 13: Terminology in graphs
	Slide 14: Undirected graphs
	Slide 15: Directed graphs
	Slide 16: Graphs: adjacency
	Slide 17: Weight or “cost” of an edge
	Slide 18: Degree of a vertex
	Slide 19: Paths
	Slide 20: Cycles
	Slide 21: Connected and disconnected
	Slide 22: Connected and disconnected
	Slide 23: Complete graph
	Slide 24: Graph: examples
	Slide 25: Storing and representing graphs
	Slide 26: Weights in adjacency matrix
	Slide 27: Storing and representing graphs
	Slide 28: Dense v.s. sparse
	Slide 29: Dense v.s. sparse
	Slide 30: Topological sort
	Slide 31: Topographical sorting example
	Slide 32: Topographical sorting example
	Slide 33: Topographical sorting example
	Slide 34: Topographical sorting example
	Slide 35: Topographical sorting example
	Slide 36: Topographical sorting example
	Slide 37: Topographical sorting example
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Application of topo sort
	Slide 47: Application of topo sort
	Slide 48: Shortest path algorithms
	Slide 49: Shortest path: formal definition
	Slide 50: Shortest path: positive edges
	Slide 51: Shortest path: positive edges
	Slide 52: Shortest path: negative edges
	Slide 53: Unweighted shortest path
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Weighted shortest path
	Slide 62: Weighted shortest path
	Slide 63: Weighted shortest path
	Slide 64: Weighted shortest path
	Slide 65: Weighted shortest path
	Slide 66: Weighted shortest path
	Slide 67: Weighted shortest path
	Slide 68: Code for Dijkstra’s algorithm
	Slide 69: Code for Dijkstra’s algorithm
	Slide 70: Dijkstra’s summary

