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Overview

* Definitions
* Terminology
* Graphrepresentation

* Topological sort Single-source shortest ]
» Shortest-path algorithms!{_Path problem

* { Unweighted shortest path
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Graph and graph algorithms

* Whatisagraph?

* AgraphG=(V, E) consists of a set of verticesV, and a set of edges E.
* Each edgeis a pair (v, w), where v, w € \/— Both vandw are vertices |

* Graph algorithm?

* Analgorithm designed to work with data kept in a graph structure
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Graph

Where have we seen graphs?
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Graph

Big-O for graphs

* Intrees, heaps, hashing, stacks

* Number of updates or operations to complete algorithm
* Push ==add node to head of list
* Insert (tree) == traversal to bottom of tree, then node create & update

* Insorting:
* Number of swaps/moves and comparisons done

* Forgraphs, big-O is based on two things:

* Edgestraversed
* nodes (vertices) inspected j‘|E|==”UmberOfec@eS ]

|V| == number of vertices
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A traversal graph example
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A traversal graph example
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Graph

A traversal graph example
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Graph

A traversal graph example
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Graph

A traversal graph example

Let us strip away irrelevant details A
’\ 6 B
5 \0\

3D/ 7
A
P ¢




Graph

A traversal graph example

G =(V, E): agraph
Let us strip away irrelevant details A’\ V: a set of vertices
6 B E: a set of edges
5 \‘\
3
Vol
6
J

4
of 9/’\
8




Graph

Graph representation: how?

* Determining what you need to represent
* Find points of interest

* How can an object traverse between those points?
s it on the physical world?

* Once you have the nodes and a way to connect them as edges, you
have a graph

12



Graph

Terminology in graphs

* Due to their flexibility graphs have many terms to keep track of

* Ensuring you are fluent in the terminology is a huge part of being able
to converse, reason about, and leverage graph algorithms

* Be prepared to learn terms as we go along

13
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Undirected graphs

* Edges do not have a front and back,
normally shown with a line (no arrow)

* Edgescan be traversedin either
direction

* Think of it being the difference

between one-way streets and
two-way streets

* Both nodes are adjacent to each
other

¢ (BI D) = (DI B) Figure 9.62 An undirected graph
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Directed graphs

* Directed graphs are when the edges are “directed.”

* This means they have a front and a back, normally shown as an arrow

* (v, w)EE (4)
* Edgefromvtow
* (1,2)#(2,1)

O

E

Figure 9.76 A directed graph
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Graphs: adjacency

* Vertexwisadjacenttovifandonlyif(v, w) €EE
* This means you can traverse the edge from vtow

* When using undirected edges, (v, w) means (w, v) so w and v are both
adjacent to each other 0

[Undirected graphs:

Bisadjacentto D

N
[Directed graphs:
D is adjacentto B

D is adjacentto C




Graph

Weight or “cost” of an edge

* Edges cancarry a “cost” to traverse them

* Forexample, two intersections are connected and the cost is how many meters
long the connecting road is

* What the cost means is entirely dependent upon what the graph is representing

DF5\Q\
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Graph

Degree of a vertex

* The number of vertices adjacent to a vertex
* Indegree is the number of incoming edges

* Qutdegree is the number of outgoing edges



Graph

Paths

A path is a sequence of vertices
* W_1,W_2,W_3,...,W_Nsuchthat(w_i,w_{i+1})€Efora<i<N

The length of a path is the number of edges on the path (not vertices)

The path can go from a vertex to itself (a special case)
 Ifthat path has no edges, it has a length of zero.

A path can be (v, v): aloop
* Normally loops don’t happen in most algorithm traversals, but can happen

Simple paths: all vertices are distinct (no repeated vertices)
* Exception: First and last can be the same ifit's a path and a loop.

19



Cycle ina graphisanon-

empty path in which all

vertices are distinct except the - [y

first and last one '
* 02122220

Directed cycle: cyclein a
directed graph
* Cyce1:021222>32c¢
* Cycle2:2=2422

Directed Acyclic Graph ’-@
* Directed graphs with no cycles @,. G

______________

20




Graph

Connected and disconnected

* Anundirected graph is a connected graph if there is a path from every
vertex to every other vertex

Th|s graph becomes
disconnected when the

.\ < dashed edge isremoved

Connected Graph Disconnected Graph
Includes 3 components.

21




Graph

Connected and disconnected

* Adirected graph is weakly connected if the underlying undirected
graph is a connected graph

* Adirected graph is strongly connected if it contains a directed path
from x toy (and from y to x) for every pair of vertices (x, y)

Y
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Complete graph

* When there is an edge between every pair of vertices
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Graph: examples

* Airport connections

* Road trip route planning

* Traffic flow

* Networking

* LinkedIn

* (Course prerequisites: a DAG
* What else?

24
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Storing and representing graphs

* Adjacency matrix
* A2-dimension array where each dimension contains all vertices

* Foreach edge (y, v), we set A[u][v] to true; otherwise the entry in the array is
false

* Ifedges have weights, set A[u][v] equal to the weight and use either a very large
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)




Graph

Weights in adjacency matrix

1 2 4
2 3 0
0 15 0
15 0 13
2 0 S
0 13 0

Adjacency Matrix Representation of
Weighted Graph



Graph

Storing and representing graphs

* Adjacency matrix

A 2-dimension array where each dimension contains all vertices

For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is
false

If edges have weights, set A[u][v] equal to the weight and use either a very large
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

Disadvantage?
* Requires O(|V|"2) space
* only appropriateif |E| = ©(|V|*2)
« Wasteful if [E[ <<O(|V|*2)

27
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Dense v.s. sparse

* Most graphs are sparse
* Thismeans |E| << |V|
* Better solution for sparse graphs is an adjacency list representation
» Keep alist of all adjacent vertices for each vertex
* Spacerequirement becomes O(|E| + |V])
* Instead of ©(|V|*2) with the matrix
* Weights can be kept with edges in adjacency list
* Standard way to represent graphs

28
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.S. sparse

Dense v

C

b

a

29
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Topological sort

* Topological sortis an ordering of vertices in

a directed acyclic graph, such that if there is
a path fromv_itov_j, thenv_jappears @

after v_iin the ordering \v@‘@
- Not work if there is a cycle in the graph “ @
* Does not guarantee a unique ordering @‘\

* Used for deciding scheduling of work units
* Edgesrepresent the dependency of work units

* On |Y those with an i ndeg ree of o can be “done” Figure 9.3 An acyclic graph representing course prerequisite structure
next

30
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Topographlcal sorting example

Start from va:
in-degree=o0

e {va,v2,vg5,Vv4,Vv3,Vv7,Vv6}and
fvi,v2,vg,v4, V7, V3, v6} are
both valid topological
orderings

1. Find node with no “in-edges”
1) In-degree of zero

2) Called a“source node”

2. Print out (process) node &&
remove it (and edges implicitly)
from graph

* 3)Repeat

Figure 9.4 An acyclic graph

31
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Topographical sorting example
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Topographical sorting example
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Topographical sorting example
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Topographical sorting example
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Topographical sorting example
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Topographical sorting example

[ Delete order: v1, v2, vs, v4, v7, v3, v6 = topographical sorting order ]




|

Start from va:
in-degree =0

%m

Implementation:
Save nodes in a heap
by their in-degrees

AN

Va

Ve

V7

Vi-o0

N
V2-1

V6 -3

38



Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

AN

Va

Ve

V7

Vi-o0

N
V2-1

V6 -3

V2 -0

V3-1

39



Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Va

Ve

V7

Y

Vi-o0 V2-1 Vg -1 V3-2 V7-2 Vg4 -3 V6 -3
V2-0 V3-1 Vg -1 Vg -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2

40



Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

Y

Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3

Vg -0 V3-1 V6 -3 Vg4 -1 V7-2

V4 -0 V3-1 V6 -3 V7-1

41



Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

\\I
Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2
V4 -0 V3-1 V6 -3 V7-1
V7-0 V3-o0 V6 -2

42



Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

\\I
Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2
V4 -0 V3-1 V6 -3 V7-1
V7-0 V3-o0 V6 -2
V3-o0 V6 -1

43



Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

\\I
Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2
V4 -0 V3-1 V6 -3 V7-1
V7-0 V3-o0 V6 -2
V3-o0 V6 -1

44,
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Graph

Application of topo sort
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Application of topo sort

. File5 File6
File1



Graph

Shortest path algorithms

* How to go across graph at the lowest cost from A to B?
* "“Short” can be defined in lots of ways - entirely application dependent
* Thisis where the cost of an edge truly starts to matter

[ What is the shortest
path from 1to03?

48




Graph

Shortest path: formal definition

* Single-source shortest-path problem:
* Givenasinput aweighted graph, G =(V, E), and a distinguished vertex s, find the
shortest weighted path from s to every other vertex in G.
* Costof apathis:

* Associated with each edge (v_i, v_j)is a cost c{i,j} to traverse the edge. The cost
of a pathfromV_1toV_N:

N—1 |

49




Graph

Shortest path: positive edges

e vitov6?

Figure 9.8 A directed graph G



Graph

Shortest path: positive edges

* vitovb6?
* Vi V4DV7P>V6
* Sumcost: 6

Figure 9.8 A directed graph G




Graph

Shortest path: negative edges

* Go:vg->Vvy4
* Takes1right?
* Whatabout:
VG -> V4 -> V2 -> VG -> V47
Perhaps you go around again?

* Extreme case: If | add 1 more edge
(vg, v2), cost: -5, will you ever find a
shortest path forv2 -> vg?

Figure 9.9 A graph with a negative-cost cycle

* When a negative cycle exists, shortest
paths are not defined!
-- Cost can go to -INF

52




Graph

Unweighted shortest path

* Find shortest path from a vertex s to all other vertices

* Only care about number of edges in path, not their costs (cost ==1)
1. Mark starting node (s) with length o
2. Look at all adjacent vertices with distance 1 from's
3. Repeat for all vertices at distance 2, then 3, etc
4. Once all nodes are marked, you are finished

* Thisis abreadth first search (BFS): the network is examined in layers,
starting from a root node. Basically, level order traversal for trees

* Final resultis all vertices are marked with distance from initial (s)
* DoneinO(|E|+|V]|) time

53



[ Find shortest path from a vertex s to all other vertices ]

~N

Choose s Vi = V2 Vi 1
to be v3 '

Va v;
0




void Graph::unweighted( Vertex s )

{ L .
for each Vertex v Initialize the distance of
{ all vertices as INFINITY Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, py, known d, py  known d, Py
v.known = false; ] .
} Vi F 00 0] F | Vi T | V3 T 1 V3
Initialize the distance of sas o V2 F oo| 0 Foooo 0 F 2 W F 2w
V3 F ] 0 T 0 0 T 0 0 T 0 0
s.dist = 0; V4 F oo| 0 | oo 0 | 2 F 2 v
Vs F o0 ] F o0 0 F o0 0 F o0 (]
for( int currDist = 05 currist < NUM_VERTICES; currDiste+ ) '¢ | 1 |ff 0 P 1wk 1o b 1w
- vy : 050 g 0o ; %) ( : 00
for each Vertex v
. . ) ; v Vi,V Vi, Va, ¥ Vi,V
if( !v.known && v.dist == currDist ) Q ’ b o 2
{ vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
v.known = true; . v known  d, pv known  d, pv  known  d, pv  known  d, Py
for each Vertex w adjacent to v
if( w.dist == INFINITY ) o T w T 1w 1 oo T 1w
{ L T 2 V1 T 2 V1 T 2 L] T 2 V1
' . v T 0 0 T 0 O T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
w.path = v; Vs F 3y F 3y T 3 v T 3w
} V& T Vi T | Vi T | V3 T 1 Vi
) vy F 0o 0 F 3 v F 3 va T 3 v
} Q: Va4, Vs Vs, VT VT empty

Figure 9.16 Pseudocode for unweighted shortest-path algorithm e



void Graph::unweighted( Vertex s )

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, p, known d, p,  known d, Py
v.known = false;
V] F oo| O F 1 V3 T 1 V3 T 1 V3
} V2 F 00 0 I oo 0 F 2 Vi F 2 vl
V3 F 0 0 T 0 0 T 0 0 | 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ ; o E F 2 ‘; E 2 ‘3
= — Vs y 00 y o0 : o0 : 00
for( int currDist = 0; currDist < NUM VERTICES; currDist++ ) ve F | 0 F I v F 1 w3 T 1 v
vy F 50 0 F fa%s) 0 F o0 0 I fo¥e) 0
for each Vertex v
. . ) ; v Vi,V Ve, V2,V v,V
if( !v.known && v.dist == currDist ) Q ’ b o 2
{ vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
v.known = true; . v known  d, pv known  d, pv  known  d, pv  known  d, Py
for each Vertex w adjacent to v
if( w.dist == INFINITY ) 4 I L v ! L v l 1 v I I v
{ L T 2 V1 T 2 V1 T 2 L] T 2 V1
. . v T 0 O T 0 O T 0 0 T 0 0
w.dist = currDist + 1; va F 2 v T 2 v T T T 2y
Ww. path =V s Vs F 3 V2 F 3 Va T 3 Vi T 3 Va
} V& T | Vi T | Vi T | V3 T 1 Vi
) vy F 0o 0 F 3 v F 3 va T 3 v
} Q: V4, V5 Vs, V7 VT empty
Figure 9.16 Pseudocode for unweighted shortest-path algorithm 6



void Graph::unweighted( Vertex s )

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, p, known d, py  known d, Py
v.known = false;
v F oo| 0 F 1 v T 1 va T 1 v
} v F (a9] 0 F o0 0 F 2 V1 F 2 V]
V3 F 0 0 T 0 0 T 0 0 | 0 0
s.dist = 0; | Largest distance = |V| V4 Er oS E Ir o g Ir 2 ‘; lr 2 ‘3
— V5 : 00 o0 oo 00
for( int currDist = 0; currDist < NUM VERTICES; currDist++ )| "¢ F f 0 : Lo : Lo ! Low
for each Vertex v vy F 50 0 I fa%s) 0 F o0 0 I fo¥e) 0
; ; ; : v Vi,V Ve, V2,V V2, ¥
if( !v.known && v.dist == currDist %4-,,5‘ < ’ Do o -
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
:' knownh=vtr:E; 4 - current distance v known  d, pv known  d, pv  known  d, pv  known  d, Py
or eac ertex w adjacen oV
if( w.dist == INFINITY ) 4 I L v ! L v l 1 v I I v
{ L T 2 V1 T 2 V1 T 2 L] T 2 V1
. . v T 0 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
Ww. path =V s Vs F 3 V2 F 3 Va T 3 Vi T 3 Va
} V& T | Vi T | Vi T | V3 T 1 Vi
\ vy F 0o 0 F 3 v F 3 va T 3 v
} Q: Va4, Vs Vs, VT VT empty

Figure 9.16 Pseudocode for unweighted shortest-path algorithm



void Graph::unweighted( Vertex s )

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, py, known d, py  known d, Py
v.known = false;
0 S€ Vi F 00 0 F | Vi T 1 V3 T 1 V3
} v F (a9] 0 F o0 0 F 2 V] F 2 V]
V3 F 0 0 T 0 0 T 0 0 T 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ Ir o ﬁ Ir 2 ‘; Ir 2 ‘3
— — Vs 00 _ o0 _ o0 ' o0
for(_int currDist = 0; currDist < NUM VERTICES; currDist++)[ o | F [|eof ¢ 0 towmo b bow b
vy I 50 0 F fa%s) 0 F o0 0 F fo¥e) 0
for each Vertex v
if( !v.known &% v.dist == currDist %4-,5_‘ @ o e ot e
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
-known = true; : current distance v known  d, pv known  d, pv  known  d, pv  known  d, Py
for each Vertex w adjacent to v
S K if( w.dist == INFINITY ) o T s T 1w 1 a T 1 %
et to known { vy T 2 w T 2 w T 2 ww T 2 9y
V3 T D 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
w.path = v; ~ Vs F 3y F 3y T 3 v T 3w
} ((Upd 1? d " V6 T V3 T L v T I v T 1 v
) L P .a € adjacen J vy F 0o 0 F 3 v F 3 va T 3 v
\ vertices Q: Va.Vs Ve ¥y vy empLy

Figure 9.16 Pseudocode for unweighted shortest-path algorithm 5



void Graph::unweighted( Vertex s )

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, |known|| d,| p, known d, py  known d, Py
v.known = false;
Vi F 00 0] F | V3 T 1 V3 T 1 vy
} v F (a9] 0 F o0 0 F 2 V1 F 2 V]
V3 F 0 0 T 0 0 1 0 0 | 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ Ir o ﬁ Ir 2 ‘g Ir 2 ‘3
— — Vs 00 o0 o0 ~ o0
for( int currDist = 0; currDist < NUM VERTICES; currDist++ )| '° F | 0 F L] v F I v T 1 v
vy I 50 0 I fa%s) 0 I o0 0 I fo¥e) 0
for each Vertex v
if( !v.known 8& v.dist == currDist e @ o e o o
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
-known = true; : current distance v known  d, pv known  d, pv  known  d, pv  known  d, Py
for each Vertex w adjacent to v
. . T 1 v T 1 v T v T 1 v
if( w.dist == INFINITY it ’ ’ ? ’
Set to known { ( ) v T 2 w T 2 w T 2 w T 2 9w
V3 T D 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
w.path = v; ~— | Vs F 3 v F 3 v T 3w T 3 v
} (U da1; ~diacent V6 T L v T L v T I v T 1 v
) L P _ J J V7 F o 0 F 3w F 3 vy T 3 v
} Vertlces {1 }'4."’3 vﬁ1'||_.'-|-,- 1,."‘]'.' L‘]‘I‘Ipl}-’
Figure 9.16 Pseudocode for unweighted shortest-path algorithm -



void Graph::unweighted( Vertex s )

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, |known|| d,| p, known d, py  known d, Py
v.known = false;
Vi F 00 0] F | V3 T 1 V3 T 1 vy
} v F (a9] 0 F o0 0 F 2 V1 F 2 V]
V3 F 0 0 T 0 0 1 0 0 | 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ Ir o ﬁ Ir 2 ‘g Ir 2 ‘3
— — Vs 00 o0 o0 ~ o0
for( int currDist = 0; currDist < NUM VERTICES; currDist++ )| '° F | 0 F L] v F I v T 1 v
vy I 50 0 I fa%s) 0 I o0 0 I fo¥e) 0
for each Vertex v
if( !v.known 8& v.dist == currDist e @ o e o o
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
-known = true; : current distance v known  d, pv known  d, pv  known  d, pv  known | d, Py
for each Vertex w adjacent to v
. . T 1 v T 1 v T v T 1 v
if( w.dist == INFINITY it ’ ’ ? ’
Set to known { ( ) v T 2 w T 2 w T 2 w T |2]|w
V3 T D 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2 | v
w.path = v; ~— | Vs F 3 v F 3 v T 3w T 3 v
} (U da1; ~diacent V6 T L v T L v T I v T 1| v
) L P _ J J V7 F o 0 F 3w F 3 vy T 3| v
} Vertlces {1 }'4."’3 vﬁ1'||_.'-|-,- 1,."‘]'.' L‘]‘I‘Ipl}-’
Figure 9.16 Pseudocode for unweighted shortest-path algorithm .



General problem: setting weight=1for each edge
Graph —> unweighted shortest path problem

Weighted shortest path

BFS cannot solve this issue
* Apathwith more edges may have lower cost

Dijkstra’s Algorithm takes into account edge weights for finding paths
Don't just keep the raw distance, but sum up the cost to get there

Greedy algorithm - follow lowest cost path first every time.

* Queueissorted by shortest path of the nodes not explored so far (priority queue
time!)

Again, keep a table of the vertices and their costs. Start them at INF

* Ifanode popped off of the queue shortens another node’s path
then benefits cascade down the chain automagically

Heavily used in network routing and shortest path network choices
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Graph

Weighted shortest path

* Algorithm

* Putallverticesin a priority queue and the initial distance is INF except
the source

* Select vertex v from the queue which has the smallest distance to v
(denoted by d_v) among unknown vertices
* Declares shortest path from s to vis known
* For each adjacent node (denoted by w) of v
* Ifunweighted graph:

* setd_w=d_v+a(ifd_w=INF, aka not visited yet), thus
this lowers value of d_w if v was shorter path

* If weighted graph:
* Setd_w=d_v+ cfv,w} (if this can reduce dw) 62



Graph

Weighted shortest path

1. Initialize distances according to the algorithm.

* Allvertexes are stored in a min-heap (priority queue) according to
the current distance to A. The initial distance is INF

A

{Find the shortest path:

A->B




Graph

Weighted shortest path

* 2. Pickfirst node and calculate distances to adjacent nodes.

A‘




Graph

Weighted shortest path

* 3.Pick next node with minimal distance (deleteMin()); repeat adjacent
node distance calculations (decrease()).

AQ




Graph

Weighted shortest path

* 3.Pick next node with minimal distance (deleteMin()); repeat adjacent

node distance calculations (decrease()).

/]

£ %
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Graph

Weighted shortest path

* 4. Repeat Step 3, until no unknown vertices left in the queue
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Graph

Code for Dijkstra’s algorithm

General problem: setting weight=1 for each edge ]

struct Vertex —> unweighted shortest path problem
{
List adj; // Adjacency list
bool known;
DistType dist; // DistType is probably int
Vertex path; // Probably Vertex *, as mentioned above

// Other data and member functions as needed
bs

Figure 9.29 Vertex class for Dijkstra’s algorithm (pseudocode)
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void Graph::dijkstra( Vertex s )

for each Vertex v i L )
{ '::! Initialization ]
v.dist = INFINITY;

Codefor ™ orithm

Graph

Expand to vertices layer by
layer to the farthest one

Vertex v = smallest unknown distance vertex;

v.known = true;

for each Vertex w adjacent to v
if( !w.known )

{

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 = .
! DistType cvw = cost of edge from v to w;
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

{
// Update w

decrease( w.dist to v.dist + cvw );

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
if( v.dist + cvw < w.dist ) H
1
1
1
1
1
1
1
1
1
w.path = v; H
1

1

1

1

1

1

1

1

1

Figure 9.31 Pseudocode for Dijkstrak algorithm 69
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Graph

Jkstra S summary

* Shortest path algorithms are incredibly valuable

* Dijkstra’s Algorithm is fast and efficient
* By default, cannot work if there’s a negative cycle in the graph
* Worksin O(|E| + |V|log |V]) time
* Exploreall |[E| edges

* Eachround in the loop causes a percolation-up in the priority queue (minheap) of |V|
vertices - or log |V|

* O(|E|) space needed to store all of the edges in the queue
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