CPTS 223 Advanced Data
Structure C/C++

Graph

Graph

Overview

* Definitions
* Terminology
* Graphrepresentation

* Topological sort Single-source shortest]
» Shortest-path algorithms!{_Path problem

* { Unweighted shortest path

Graph

Graph and graph algorithms

* Whatisagraph?

* AgraphG=(V, E) consists of a set of verticesV, and a set of edges E.
* Each edgeis a pair (v, w), where v, w € \/— Both vandw are vertices |

* Graph algorithm?

* Analgorithm designed to work with data kept in a graph structure

GRAPH 5

W

GRAPH 6

T

GRAPH 7

S

GRAPH 8

Graph

Where have we seen graphs?

node
A

|

Ao » A1 » A2 —1+—| A3 < YA —1_
Jo | >

l Linked list I data next pointer null

Tree:
® 45:22?63:&%““] z B
® © O 6 & © ij:644_ﬁ
HOOO®Om® g émj
P © o £

Graph

Big-O for graphs

* Intrees, heaps, hashing, stacks

* Number of updates or operations to complete algorithm
* Push ==add node to head of list
* Insert (tree) == traversal to bottom of tree, then node create & update

* Insorting:
* Number of swaps/moves and comparisons done

* Forgraphs, big-O is based on two things:

* Edgestraversed
* nodes (vertices) inspected j‘|E|==”UmberOfec@eS]

|V| == number of vertices

Graph

A traversal graph example

. -t 3
Given a map of WSU and LN = s ;
. 2
. ; o) oA Rl "o -..(.' _‘: -
surrounding area, how to get T A) ;
2] X3 B ' *
from one place to another? o > . 3 Sk
3 N s 2 4 o A 5
.- M Vg w - - ~
: Y s 5 2 Vi, ¥
> $ oreo 5t v, y
; ; | S N ut ¥ 5
» A Cveans ;A . . 3 £ ' -~ s Onie
] Ny D } . i - S § arveny -
e § Comhadisns @ n s B
.A e e Poaen ! oyt
* ; » » Sociar Fain " - [, S ordoars
i Py F 4 ra ,: y " M Ciwens Pave -~
. - e\’ L F & - c Farandy
. ¢ - ; s,
; @ o g .|,‘_‘F'7 J ¥ " b 4 ey Fant £ aret® o 3
oy yon O g ‘ -,q' b L » '.“"':"o‘ oo
E F e 2 Nery no A Stane ey
. W % : Tiade s i -
J: : - : o'. @ € e "‘.ﬂu v 7-":""" ; Y it
ig & . & Cotogt Ave - e
e M Peatee J o
gy % | v B
— , e :
. ' — “,‘ s ¥ s Ty Marten }'.‘.’ : ; ;’.,/ € A 3
» = & Yo s & s
7 e NG el e
1 f " = 3= 23 ™ ~
el T \ L t‘ 1 “ -
- . v [Re—"
" @J & - Xy wwem W o B !
- € Dostu B Pan’ » . T 3
* Wige . i
Tals o ’ N §
« .'o L - @ N Viaom I R
r - 4 ST

Graph

A traversal graph example

H -, > 3
W Teamy 2 R ;_ *"
c _ :
. ~ H H
- - . ’ £ X
> A v W e i d)
< 3
{A,B,C,D,E, F G, H,I J} & . ;
/ I/ I/ I A | I 17 > . Gre Han ¢ y
: <04 >
9 z ' 4
@ ! LR
g ’
” - ¥
F oo £ & e N .
! Bl SO Pea 0 I ¥ 4 ! ;
* e £ wweraenst |
: 2 ™ g
p [| ronsery
+ WY Coveinc . A e
e 1 o
e b ' o Dby e
Wootery o ner Drpten
P - - ‘o Forpranrs
wh Py » Pavg -~
- “ L A
’ Bogers Fast Tecew 3
o - »
w Washngion - & Yiis oy
o Stane Ly
. Stane Lvwernity
Tiade
-
\-,l' ares Wey v .
L)2 Puyten . ‘e -
“ . - -
A z
™ Poetme 2 & 3
- = v , -
~ Ay Phren: a s o A %
v we '. » >
E Boron = 2 o 3
“ : » .
< - : A
» =~ Yooewro® 2 -~
¥ v’ - | Rtarres) A D S
Sl ::~ h - Qd N
g W o shunbie <
L e REON e ey ‘--—. 4
LIPS % b ~
744 o\ T aa . 2
& [- 2
d
 Dwby 3¢ L oen ™ - * e 9 -
b Owesk g
- 2 i N QD - Vil 5
4 [1 — “ 3" *, .
3 i £ »” o

Graph

A traversal graph example

LT
-
Ve o

We have a set of edges connecting |- p
._»"f y ' ‘ o . Lo . et d A

.
the vertices #
z ¥
M 4 r
3 % A
3
” 5 4 b
-
— g & - b .
> = 3 0 N Pt 1 +# s
= " £ v meraonst - § 2
: 7
p [e
L
o Baiey F s
R
f oy Codraman '
<
“ sty L
- ~ . A
s :‘
& ad »
by, o © Aashgion -V Ve«
St Lnwwenty
»
- e
W ey A 2
- 3
3 %
v |
3
A
? N
- S M Soue
v
ke s ~
i @J pea ;
4
-
3
= .

==
-
[
S

Graph

A traversal graph example

I
d be assigned weigh £y :
Edges can be assigned weights (or :
" '.q.(" _': 4
costs) /
; ¥
>
g e) deepail S
i .
F ot Farway P
o Dabey f e o reevas
e e e bl
f -y Codraman '
-
."‘ net
" .
2 2
Yoy Aashngion . VE Vi <
Stane Lvwwenity
=
j £ Wey v »
S f: s
¥ Want &
By 6 o] Saloas oy o 8 5
pe o i | ¢ >
e @ ek | .
;‘--.(- @J :: ; ::’ i T:. 8
- Doste B Dary % T ' 2 '
-y N .|'.“"‘" & ' * v "; -* :
a L ppa— g
-.. ; . & 'Q"‘. - Ve y
5 i 4 =

Graph

A traversal graph example

Let us strip away irrelevant details A
’\ 6 B
5 \0\

3D/ 7
A
P ¢

Graph

A traversal graph example

G =(V, E): agraph
Let us strip away irrelevant details A’\ V: a set of vertices
6 B E: a set of edges
5 \‘\
3
Vol
6
J

4
of 9/’\
8

Graph

Graph representation: how?

* Determining what you need to represent
* Find points of interest

* How can an object traverse between those points?
s it on the physical world?

* Once you have the nodes and a way to connect them as edges, you
have a graph

12

Graph

Terminology in graphs

* Due to their flexibility graphs have many terms to keep track of

* Ensuring you are fluent in the terminology is a huge part of being able
to converse, reason about, and leverage graph algorithms

* Be prepared to learn terms as we go along

13

Graph

Undirected graphs

* Edges do not have a front and back,
normally shown with a line (no arrow)

* Edgescan be traversedin either
direction

* Think of it being the difference

between one-way streets and
two-way streets

* Both nodes are adjacent to each
other

¢ (BI D) = (DI B) Figure 9.62 An undirected graph

Graph

Directed graphs

* Directed graphs are when the edges are “directed.”

* This means they have a front and a back, normally shown as an arrow

* (v, w)EE (4)
* Edgefromvtow
* (1,2)#(2,1)

O

E

Figure 9.76 A directed graph

Graph

Graphs: adjacency

* Vertexwisadjacenttovifandonlyif(v, w) €EE
* This means you can traverse the edge from vtow

* When using undirected edges, (v, w) means (w, v) so w and v are both
adjacent to each other 0

[Undirected graphs:

Bisadjacentto D

N
[Directed graphs:
D is adjacentto B

D is adjacentto C

Graph

Weight or “cost” of an edge

* Edges cancarry a “cost” to traverse them

* Forexample, two intersections are connected and the cost is how many meters
long the connecting road is

* What the cost means is entirely dependent upon what the graph is representing

DF5\Q\
6| B C
3 o— 7/
?044 F a
9
6 6\/ 8
J{ G &H

Graph

Degree of a vertex

* The number of vertices adjacent to a vertex
* Indegree is the number of incoming edges

* Qutdegree is the number of outgoing edges

Graph

Paths

A path is a sequence of vertices
* W_1,W_2,W_3,...,W_Nsuchthat(w_i,w_{i+1})€Efora<i<N

The length of a path is the number of edges on the path (not vertices)

The path can go from a vertex to itself (a special case)
 Ifthat path has no edges, it has a length of zero.

A path can be (v, v): aloop
* Normally loops don’t happen in most algorithm traversals, but can happen

Simple paths: all vertices are distinct (no repeated vertices)
* Exception: First and last can be the same ifit's a path and a loop.

19

Cycle ina graphisanon-

empty path in which all

vertices are distinct except the - [y

first and last one '
* 02122220

Directed cycle: cyclein a
directed graph
* Cyce1:021222>32c¢
* Cycle2:2=2422

Directed Acyclic Graph ’-@
* Directed graphs with no cycles @,. G

20

Graph

Connected and disconnected

* Anundirected graph is a connected graph if there is a path from every
vertex to every other vertex

Th|s graph becomes
disconnected when the

.\ < dashed edge isremoved

Connected Graph Disconnected Graph
Includes 3 components.

21

Graph

Connected and disconnected

* Adirected graph is weakly connected if the underlying undirected
graph is a connected graph

* Adirected graph is strongly connected if it contains a directed path
from x toy (and from y to x) for every pair of vertices (x, y)

Y

Graph

Complete graph

* When there is an edge between every pair of vertices

Graph

Graph: examples

* Airport connections

* Road trip route planning

* Traffic flow

* Networking

* LinkedIn

* (Course prerequisites: a DAG
* What else?

24

Graph

Storing and representing graphs

* Adjacency matrix
* A2-dimension array where each dimension contains all vertices

* Foreach edge (y, v), we set A[u][v] to true; otherwise the entry in the array is
false

* Ifedges have weights, set A[u][v] equal to the weight and use either a very large
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

Graph

Weights in adjacency matrix

1 2 4
2 3 0
0 15 0
15 0 13
2 0 S
0 13 0

Adjacency Matrix Representation of
Weighted Graph

Graph

Storing and representing graphs

* Adjacency matrix

A 2-dimension array where each dimension contains all vertices

For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is
false

If edges have weights, set A[u][v] equal to the weight and use either a very large
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

Disadvantage?
* Requires O(|V|"2) space
* only appropriateif |E| = ©(|V|*2)
« Wasteful if [E[<<O(|V|*2)

27

Graph

Dense v.s. sparse

* Most graphs are sparse
* Thismeans |E| << |V|
* Better solution for sparse graphs is an adjacency list representation
» Keep alist of all adjacent vertices for each vertex
* Spacerequirement becomes O(|E| + |V])
* Instead of ©(|V|*2) with the matrix
* Weights can be kept with edges in adjacency list
* Standard way to represent graphs

28

Graph

.S. sparse

Dense v

C

b

a

29

Graph

Topological sort

* Topological sortis an ordering of vertices in

a directed acyclic graph, such that if there is
a path fromv_itov_j, thenv_jappears @

after v_iin the ordering \v@‘@
- Not work if there is a cycle in the graph “ @
* Does not guarantee a unique ordering @‘\

* Used for deciding scheduling of work units
* Edgesrepresent the dependency of work units

* On |Y those with an i ndeg ree of o can be “done” Figure 9.3 An acyclic graph representing course prerequisite structure
next

30

Graph

Topographlcal sorting example

Start from va:
in-degree=o0

e {va,v2,vg5,Vv4,Vv3,Vv7,Vv6}and
fvi,v2,vg,v4, V7, V3, v6} are
both valid topological
orderings

1. Find node with no “in-edges”
1) In-degree of zero

2) Called a“source node”

2. Print out (process) node &&
remove it (and edges implicitly)
from graph

* 3)Repeat

Figure 9.4 An acyclic graph

31

Graph

Topographical sorting example

Graph

Topographical sorting example

Graph

Topographical sorting example

Graph

Topographical sorting example

Graph

Topographical sorting example

Graph

Topographical sorting example

[Delete order: v1, v2, vs, v4, v7, v3, v6 = topographical sorting order]

|

Start from va:
in-degree =0

%m

Implementation:
Save nodes in a heap
by their in-degrees

AN

Va

Ve

V7

Vi-o0

N
V2-1

V6 -3

38

Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

AN

Va

Ve

V7

Vi-o0

N
V2-1

V6 -3

V2 -0

V3-1

39

Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Va

Ve

V7

Y

Vi-o0 V2-1 Vg -1 V3-2 V7-2 Vg4 -3 V6 -3
V2-0 V3-1 Vg -1 Vg -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2

40

Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

Y

Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3

Vg -0 V3-1 V6 -3 Vg4 -1 V7-2

V4 -0 V3-1 V6 -3 V7-1

41

Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

\\I
Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2
V4 -0 V3-1 V6 -3 V7-1
V7-0 V3-o0 V6 -2

42

Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

\\I
Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2
V4 -0 V3-1 V6 -3 V7-1
V7-0 V3-o0 V6 -2
V3-o0 V6 -1

43

Start from va:
in-degree =0

deleteMin
and update
in-degrees

Implementation:

Save nodes in a heap
by their in-degrees

%m

Ve

\\I
Vi-o0 V2-1 Vg -1 V3-2 V7-2 V4 -3 V6 -3
V2-o0 V3-1 Vg -1 Vg4 -2 V7-2 V6 -3
Vg -0 V3-1 V6 -3 Vg4 -1 V7-2
V4 -0 V3-1 V6 -3 V7-1
V7-0 V3-o0 V6 -2
V3-o0 V6 -1

44,

Va

Vi

=
g
Yy
o
=]
g%
2 0n
° 5
v
Lo
+— O
w O
w5
c
— S

|

45

™M

<o)

>

mMm|| ™M

< | [O

> || >

N || N || N

~|| ~|| ~

> || = || >

N N A A

|l <] <] ~

> || = | = || =

A || A ||]| N

ni || wtn|{|] O || O || O

> > =1 =1 =

A A || A A]| O ||

N || || /|| m||] en]|]|] WO

> == =1l >=|| =
.. -

ofl|l Ol o] ©]] ol|l o] ©O

a || ~ || o ~|| || ©

> || > || = > || = || =

Graph

Application of topo sort

THTH 3360
Statistics

CIS2334

IS Applications

£is 2332
IT Hardware &

and THITH 3360

System Software

£0SE 1306
Comp Sci &

Programmin
or ELET 230
C++ Program

MATH 1330

Pre-Calculas

CIS 3343
System Analysis
& Design

LIS 3347
IS Infrastructure
& Networks

CIS 2336
Internet Applications

CiS 2348
IS Application
Development

CIS 2337
Fundamentals of
Info Security

€IS 3365

Database Mgmt

€IS 3355
Integrated IS

CIS 3368
AdvIS

Development

¢is
Technical
Elective

ciS4338
Database Admin &
Implementation

CIs 4338
Enterprise Application
Development

CIS4315
Project Mgnit
& Practice

Cis
Technical
Elective

cis
Technical
Elective

46

Application of topo sort

. File5 File6
File1

Graph

Shortest path algorithms

* How to go across graph at the lowest cost from A to B?
* "“Short” can be defined in lots of ways - entirely application dependent
* Thisis where the cost of an edge truly starts to matter

[What is the shortest
path from 1to03?

48

Graph

Shortest path: formal definition

* Single-source shortest-path problem:
* Givenasinput aweighted graph, G =(V, E), and a distinguished vertex s, find the
shortest weighted path from s to every other vertex in G.
* Costof apathis:

* Associated with each edge (v_i, v_j)is a cost c{i,j} to traverse the edge. The cost
of a pathfromV_1toV_N:

N—1 |

49

Graph

Shortest path: positive edges

e vitov6?

Figure 9.8 A directed graph G

Graph

Shortest path: positive edges

* vitovb6?
* Vi V4DV7P>V6
* Sumcost: 6

Figure 9.8 A directed graph G

Graph

Shortest path: negative edges

* Go:vg->Vvy4
* Takes1right?
* Whatabout:
VG -> V4 -> V2 -> VG -> V47
Perhaps you go around again?

* Extreme case: If | add 1 more edge
(vg, v2), cost: -5, will you ever find a
shortest path forv2 -> vg?

Figure 9.9 A graph with a negative-cost cycle

* When a negative cycle exists, shortest
paths are not defined!
-- Cost can go to -INF

52

Graph

Unweighted shortest path

* Find shortest path from a vertex s to all other vertices

* Only care about number of edges in path, not their costs (cost ==1)
1. Mark starting node (s) with length o
2. Look at all adjacent vertices with distance 1 from's
3. Repeat for all vertices at distance 2, then 3, etc
4. Once all nodes are marked, you are finished

* Thisis abreadth first search (BFS): the network is examined in layers,
starting from a root node. Basically, level order traversal for trees

* Final resultis all vertices are marked with distance from initial (s)
* DoneinO(|E|+|V]|) time

53

[Find shortest path from a vertex s to all other vertices]

~N

Choose s Vi = V2 Vi 1
to be v3 '

Va v;
0

void Graph::unweighted(Vertex s)

{ L .
for each Vertex v Initialize the distance of
{ all vertices as INFINITY Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, py, known d, py known d, Py
v.known = false;] .
} Vi F 00 0] F | Vi T | V3 T 1 V3
Initialize the distance of sas o V2 F oo| 0 Foooo 0 F 2 W F 2w
V3 F] 0 T 0 0 T 0 0 T 0 0
s.dist = 0; V4 F oo| 0 | oo 0 | 2 F 2 v
Vs F o0] F o0 0 F o0 0 F o0 (]
for(int currDist = 05 currist < NUM_VERTICES; currDiste+) '¢ | 1 |ff 0 P 1wk 1o b 1w
- vy : 050 g 0o ; %) (: 00
for each Vertex v
. .) ; v Vi,V Vi, Va, ¥ Vi,V
if(!v.known && v.dist == currDist) Q ’ b o 2
{ vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
v.known = true; . v known d, pv known d, pv known d, pv known d, Py
for each Vertex w adjacent to v
if(w.dist == INFINITY) o T w T 1w 1 oo T 1w
{ L T 2 V1 T 2 V1 T 2 L] T 2 V1
' . v T 0 0 T 0 O T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
w.path = v; Vs F 3y F 3y T 3 v T 3w
} V& T Vi T | Vi T | V3 T 1 Vi
) vy F 0o 0 F 3 v F 3 va T 3 v
} Q: Va4, Vs Vs, VT VT empty

Figure 9.16 Pseudocode for unweighted shortest-path algorithm e

void Graph::unweighted(Vertex s)

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, p, known d, p, known d, Py
v.known = false;
V] F oo| O F 1 V3 T 1 V3 T 1 V3
} V2 F 00 0 I oo 0 F 2 Vi F 2 vl
V3 F 0 0 T 0 0 T 0 0 | 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ ; o E F 2 ‘; E 2 ‘3
= — Vs y 00 y o0 : o0 : 00
for(int currDist = 0; currDist < NUM VERTICES; currDist++) ve F | 0 F I v F 1 w3 T 1 v
vy F 50 0 F fa%s) 0 F o0 0 I fo¥e) 0
for each Vertex v
. .) ; v Vi,V Ve, V2,V v,V
if(!v.known && v.dist == currDist) Q ’ b o 2
{ vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
v.known = true; . v known d, pv known d, pv known d, pv known d, Py
for each Vertex w adjacent to v
if(w.dist == INFINITY) 4 I L v ! L v l 1 v I I v
{ L T 2 V1 T 2 V1 T 2 L] T 2 V1
. . v T 0 O T 0 O T 0 0 T 0 0
w.dist = currDist + 1; va F 2 v T 2 v T T T 2y
Ww. path =V s Vs F 3 V2 F 3 Va T 3 Vi T 3 Va
} V& T | Vi T | Vi T | V3 T 1 Vi
) vy F 0o 0 F 3 v F 3 va T 3 v
} Q: V4, V5 Vs, V7 VT empty
Figure 9.16 Pseudocode for unweighted shortest-path algorithm 6

void Graph::unweighted(Vertex s)

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, p, known d, py known d, Py
v.known = false;
v F oo| 0 F 1 v T 1 va T 1 v
} v F (a9] 0 F o0 0 F 2 V1 F 2 V]
V3 F 0 0 T 0 0 T 0 0 | 0 0
s.dist = 0; | Largest distance = |V| V4 Er oS E Ir o g Ir 2 ‘; lr 2 ‘3
— V5 : 00 o0 oo 00
for(int currDist = 0; currDist < NUM VERTICES; currDist++)| "¢ F f 0 : Lo : Lo ! Low
for each Vertex v vy F 50 0 I fa%s) 0 F o0 0 I fo¥e) 0
; ; ; : v Vi,V Ve, V2,V V2, ¥
if(!v.known && v.dist == currDist %4-,,5‘ < ’ Do o -
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
:' knownh=vtr:E; 4 - current distance v known d, pv known d, pv known d, pv known d, Py
or eac ertex w adjacen oV
if(w.dist == INFINITY) 4 I L v ! L v l 1 v I I v
{ L T 2 V1 T 2 V1 T 2 L] T 2 V1
. . v T 0 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
Ww. path =V s Vs F 3 V2 F 3 Va T 3 Vi T 3 Va
} V& T | Vi T | Vi T | V3 T 1 Vi
\ vy F 0o 0 F 3 v F 3 va T 3 v
} Q: Va4, Vs Vs, VT VT empty

Figure 9.16 Pseudocode for unweighted shortest-path algorithm

void Graph::unweighted(Vertex s)

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, known d, py, known d, py known d, Py
v.known = false;
0 S€ Vi F 00 0 F | Vi T 1 V3 T 1 V3
} v F (a9] 0 F o0 0 F 2 V] F 2 V]
V3 F 0 0 T 0 0 T 0 0 T 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ Ir o ﬁ Ir 2 ‘; Ir 2 ‘3
— — Vs 00 _ o0 _ o0 ' o0
for(_int currDist = 0; currDist < NUM VERTICES; currDist++)[o | F [|eof ¢ 0 towmo b bow b
vy I 50 0 F fa%s) 0 F o0 0 F fo¥e) 0
for each Vertex v
if(!v.known &% v.dist == currDist %4-,5_‘ @ o e ot e
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
-known = true; : current distance v known d, pv known d, pv known d, pv known d, Py
for each Vertex w adjacent to v
S K if(w.dist == INFINITY) o T s T 1w 1 a T 1 %
et to known { vy T 2 w T 2 w T 2 ww T 2 9y
V3 T D 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
w.path = v; ~ Vs F 3y F 3y T 3 v T 3w
} ((Upd 1? d " V6 T V3 T L v T I v T 1 v
) L P .a € adjacen J vy F 0o 0 F 3 v F 3 va T 3 v
\ vertices Q: Va.Vs Ve ¥y vy empLy

Figure 9.16 Pseudocode for unweighted shortest-path algorithm 5

void Graph::unweighted(Vertex s)

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, |known|| d,| p, known d, py known d, Py
v.known = false;
Vi F 00 0] F | V3 T 1 V3 T 1 vy
} v F (a9] 0 F o0 0 F 2 V1 F 2 V]
V3 F 0 0 T 0 0 1 0 0 | 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ Ir o ﬁ Ir 2 ‘g Ir 2 ‘3
— — Vs 00 o0 o0 ~ o0
for(int currDist = 0; currDist < NUM VERTICES; currDist++)| '° F | 0 F L] v F I v T 1 v
vy I 50 0 I fa%s) 0 I o0 0 I fo¥e) 0
for each Vertex v
if(!v.known 8& v.dist == currDist e @ o e o o
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
-known = true; : current distance v known d, pv known d, pv known d, pv known d, Py
for each Vertex w adjacent to v
. . T 1 v T 1 v T v T 1 v
if(w.dist == INFINITY it ’ ’ ? ’
Set to known { () v T 2 w T 2 w T 2 w T 2 9w
V3 T D 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2y
w.path = v; ~— | Vs F 3 v F 3 v T 3w T 3 v
} (U da1; ~diacent V6 T L v T L v T I v T 1 v
) L P _ J J V7 F o 0 F 3w F 3 vy T 3 v
} Vertlces {1 }'4."’3 vﬁ1'||_.'-|-,- 1,."‘]'.' L‘]‘I‘Ipl}-’
Figure 9.16 Pseudocode for unweighted shortest-path algorithm -

void Graph::unweighted(Vertex s)

{
for each Vertex v
{ Initial State v3 Dequeued v1 Dequeued ve Dequeued
v.dist = INFINITY; v |known| | d, | p, |known|| d,| p, known d, py known d, Py
v.known = false;
Vi F 00 0] F | V3 T 1 V3 T 1 vy
} v F (a9] 0 F o0 0 F 2 V1 F 2 V]
V3 F 0 0 T 0 0 1 0 0 | 0 0
s.dist = 0; Largest distance = |V| V4 Er oS ﬁ Ir o ﬁ Ir 2 ‘g Ir 2 ‘3
— — Vs 00 o0 o0 ~ o0
for(int currDist = 0; currDist < NUM VERTICES; currDist++)| '° F | 0 F L] v F I v T 1 v
vy I 50 0 I fa%s) 0 I o0 0 I fo¥e) 0
for each Vertex v
if(!v.known 8& v.dist == currDist e @ o e o o
{ [V: known and at } vz Dequeued v4 Dequeuned vs Dequeued vy Dequeued
-known = true; : current distance v known d, pv known d, pv known d, pv known | d, Py
for each Vertex w adjacent to v
. . T 1 v T 1 v T v T 1 v
if(w.dist == INFINITY it ’ ’ ? ’
Set to known { () v T 2 w T 2 w T 2 w T |2]|w
V3 T D 0 T 0 0 T 0 0 T 0 0
w.dist = currDist + 1; Ve F 2 v T 2y T 2w T 2 | v
w.path = v; ~— | Vs F 3 v F 3 v T 3w T 3 v
} (U da1; ~diacent V6 T L v T L v T I v T 1| v
) L P _ J J V7 F o 0 F 3w F 3 vy T 3| v
} Vertlces {1 }'4."’3 vﬁ1'||_.'-|-,- 1,."‘]'.' L‘]‘I‘Ipl}-’
Figure 9.16 Pseudocode for unweighted shortest-path algorithm .

General problem: setting weight=1for each edge
Graph —> unweighted shortest path problem

Weighted shortest path

BFS cannot solve this issue
* Apathwith more edges may have lower cost

Dijkstra’s Algorithm takes into account edge weights for finding paths
Don't just keep the raw distance, but sum up the cost to get there

Greedy algorithm - follow lowest cost path first every time.

* Queueissorted by shortest path of the nodes not explored so far (priority queue
time!)

Again, keep a table of the vertices and their costs. Start them at INF

* Ifanode popped off of the queue shortens another node’s path
then benefits cascade down the chain automagically

Heavily used in network routing and shortest path network choices

61

Graph

Weighted shortest path

* Algorithm

* Putallverticesin a priority queue and the initial distance is INF except
the source

* Select vertex v from the queue which has the smallest distance to v
(denoted by d_v) among unknown vertices
* Declares shortest path from s to vis known
* For each adjacent node (denoted by w) of v
* Ifunweighted graph:

* setd_w=d_v+a(ifd_w=INF, aka not visited yet), thus
this lowers value of d_w if v was shorter path

* If weighted graph:
* Setd_w=d_v+ cfv,w} (if this can reduce dw) 62

Graph

Weighted shortest path

1. Initialize distances according to the algorithm.

* Allvertexes are stored in a min-heap (priority queue) according to
the current distance to A. The initial distance is INF

A

{Find the shortest path:

A->B

Graph

Weighted shortest path

* 2. Pickfirst node and calculate distances to adjacent nodes.

A‘

Graph

Weighted shortest path

* 3.Pick next node with minimal distance (deleteMin()); repeat adjacent
node distance calculations (decrease()).

AQ

Graph

Weighted shortest path

* 3.Pick next node with minimal distance (deleteMin()); repeat adjacent

node distance calculations (decrease()).

/]

£ %

66

Graph

Weighted shortest path

* 4. Repeat Step 3, until no unknown vertices left in the queue

67

Graph

Code for Dijkstra’s algorithm

General problem: setting weight=1 for each edge]

struct Vertex —> unweighted shortest path problem
{
List adj; // Adjacency list
bool known;
DistType dist; // DistType is probably int
Vertex path; // Probably Vertex *, as mentioned above

// Other data and member functions as needed
bs

Figure 9.29 Vertex class for Dijkstra’s algorithm (pseudocode)

68

void Graph::dijkstra(Vertex s)

for each Vertex v i L)
{ '::! Initialization]
v.dist = INFINITY;

Codefor ™ orithm

Graph

Expand to vertices layer by
layer to the farthest one

Vertex v = smallest unknown distance vertex;

v.known = true;

for each Vertex w adjacent to v
if(!w.known)

{

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 = .
! DistType cvw = cost of edge from v to w;
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

{
// Update w

decrease(w.dist to v.dist + cvw);

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
if(v.dist + cvw < w.dist) H
1
1
1
1
1
1
1
1
1
w.path = v; H
1

1

1

1

1

1

1

1

1

Figure 9.31 Pseudocode for Dijkstrak algorithm 69
e

Graph

Jkstra S summary

* Shortest path algorithms are incredibly valuable

* Dijkstra’s Algorithm is fast and efficient
* By default, cannot work if there’s a negative cycle in the graph
* Worksin O(|E| + |V|log |V]) time
* Exploreall |[E| edges

* Eachround in the loop causes a percolation-up in the priority queue (minheap) of |V|
vertices - or log |V|

* O(|E|) space needed to store all of the edges in the queue

70

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Overview
	Slide 3: Graph and graph algorithms
	Slide 4: Where have we seen graphs?
	Slide 5: Big-O for graphs
	Slide 6: A traversal graph example
	Slide 7: A traversal graph example
	Slide 8: A traversal graph example
	Slide 9: A traversal graph example
	Slide 10: A traversal graph example
	Slide 11: A traversal graph example
	Slide 12: Graph representation: how?
	Slide 13: Terminology in graphs
	Slide 14: Undirected graphs
	Slide 15: Directed graphs
	Slide 16: Graphs: adjacency
	Slide 17: Weight or “cost” of an edge
	Slide 18: Degree of a vertex
	Slide 19: Paths
	Slide 20: Cycles
	Slide 21: Connected and disconnected
	Slide 22: Connected and disconnected
	Slide 23: Complete graph
	Slide 24: Graph: examples
	Slide 25: Storing and representing graphs
	Slide 26: Weights in adjacency matrix
	Slide 27: Storing and representing graphs
	Slide 28: Dense v.s. sparse
	Slide 29: Dense v.s. sparse
	Slide 30: Topological sort
	Slide 31: Topographical sorting example
	Slide 32: Topographical sorting example
	Slide 33: Topographical sorting example
	Slide 34: Topographical sorting example
	Slide 35: Topographical sorting example
	Slide 36: Topographical sorting example
	Slide 37: Topographical sorting example
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Application of topo sort
	Slide 47: Application of topo sort
	Slide 48: Shortest path algorithms
	Slide 49: Shortest path: formal definition
	Slide 50: Shortest path: positive edges
	Slide 51: Shortest path: positive edges
	Slide 52: Shortest path: negative edges
	Slide 53: Unweighted shortest path
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Weighted shortest path
	Slide 62: Weighted shortest path
	Slide 63: Weighted shortest path
	Slide 64: Weighted shortest path
	Slide 65: Weighted shortest path
	Slide 66: Weighted shortest path
	Slide 67: Weighted shortest path
	Slide 68: Code for Dijkstra’s algorithm
	Slide 69: Code for Dijkstra’s algorithm
	Slide 70: Dijkstra’s summary

