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Overview 
Graph 

WSU

• Definitions

• Terminology

• Graph representation

• Topological sort

• Shortest-path algorithms
• Unweighted shortest path

• Weighted shortest path: Dijkstra’s algorithm
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Single-source shortest 
path problem



Graph and graph algorithms
Graph 

WSU

• What is a graph?
• A graph G = (V, E) consists of a set of vertices V, and a set of edges E.

• Each edge is a pair (v, w), where v, w ∈ V

• Graph algorithm?
• An algorithm designed to work with data kept in a graph structure
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Both v and w are vertices



Where have we seen graphs?
Graph 

WSU
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Big-O for graphs
Graph 

WSU

• In trees, heaps, hashing, stacks
• Number of updates or operations to complete algorithm

• Push == add node to head of list

• Insert (tree) == traversal to bottom of tree, then node create & update

• In sorting:
• Number of swaps/moves and comparisons done

• For graphs, big-O is based on two things:
• Edges traversed

• nodes (vertices) inspected
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|E| == number of edges
|V| == number of vertices



A traversal graph example
Graph 

WSU
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Given a map of WSU and 
surrounding area, how to get 
from one place to another?



A traversal graph example
Graph 

WSU
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We now have a set of vertices:
{A, B, C, D, E, F, G, H, I, J}



A traversal graph example
Graph 
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We have a set of edges connecting 
the vertices



A traversal graph example
Graph 
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Edges can be assigned weights (or 
costs)
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A traversal graph example
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Let us strip away irrelevant details
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A traversal graph example
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Let us strip away irrelevant details
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G = (V, E): a graph
V: a set of vertices
E: a set of edges



Graph representation: how?
Graph 

WSU

• Determining what you need to represent

• Find points of interest

• How can an object traverse between those points?
• Is it on the physical world?

• Once you have the nodes and a way to connect them as edges, you 
have a graph
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Terminology in graphs
Graph 

WSU

• Due to their flexibility graphs have many terms to keep track of

• Ensuring you are fluent in the terminology is a huge part of being able 
to converse, reason about, and leverage graph algorithms

• Be prepared to learn terms as we go along
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Undirected graphs
Graph 

WSU

• Edges do not have a front and back, 
normally shown with a line (no arrow) 

• Edges can be traversed in either 
direction

• Think of it being the difference 
between one-way streets and 
two-way streets

• Both nodes are adjacent to each 
other

• (B, D) = (D, B)
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Directed graphs
Graph 

WSU

• Directed graphs are when the edges are “directed.”

• This means they have a front and a back, normally shown as an arrow

• (v, w) ∈ E
• Edge from v to w

• (1, 2) ≠ (2, 1)
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Graphs: adjacency 
Graph
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• Vertex w is adjacent to v if and only if (v, w) ∈ E
• This means you can traverse the edge from v to w

• When using undirected edges, (v, w) means (w, v) so w and v are both 
adjacent to each other
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Undirected graphs:
B is adjacent to D
D is adjacent to B

Directed graphs:
D is adjacent to C



Weight or “cost” of an edge
Graph

WSU

• Edges can carry a “cost” to traverse them
• For example, two intersections are connected and the cost is how many meters 

long the connecting road is

• What the cost means is entirely dependent upon what the graph is representing
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Degree of a vertex
Graph

WSU

• The number of vertices adjacent to a vertex

• Indegree is the number of incoming edges

• Outdegree is the number of outgoing edges
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Paths
Graph

WSU

• A path is a sequence of vertices
• w_1 , w_2 , w_3 , . . . , w_N such that (w_i , w_{i+1} ) ∈ E for 1 ≤ i < N

• The length of a path is the number of edges on the path (not vertices) 

• The path can go from a vertex to itself (a special case)
• If that path has no edges, it has a length of zero. 

• A path can be (v, v): a loop
• Normally loops don’t happen in most algorithm traversals, but can happen

• Simple paths: all vertices are distinct (no repeated vertices)
• Exception: First and last can be the same if it’s a path and a loop.
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Cycles 
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• Cycle in a graph is a non-
empty path in which all 
vertices are distinct except the 
first and last one
• 0 → 1 → 2 → 0

• Directed cycle: cycle in a 
directed graph
• Cycle 1: 0 → 1 → 2 → 3 → 0

• Cycle 2: 2 → 4 → 2

• Directed Acyclic Graph
• Directed graphs with no cycles
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Connected and disconnected
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• An undirected graph is a connected graph if there is a path from every 
vertex to every other vertex
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This graph becomes 
disconnected when the 
dashed edge is removed



Connected and disconnected
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• A directed graph is weakly connected if the underlying undirected 
graph is a connected graph

• A directed graph is strongly connected if it contains a directed path 
from x to y (and from y to x) for every pair of vertices (x, y)

22

1

3 2

1

3 2



Complete graph
Graph

WSU

• When there is an edge between every pair of vertices
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Graph: examples
Graph

WSU

• Airport connections

• Road trip route planning

• Traffic flow

• Networking

• LinkedIn

• Course prerequisites: a DAG

• What else?
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Storing and representing graphs
Graph

WSU

• Adjacency matrix
• A 2-dimension array where each dimension contains all vertices

• For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is 
false

• If edges have weights, set A[u][v] equal to the weight and use either a very large 
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

25



Weights in adjacency matrix
Graph

WSU
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Storing and representing graphs
Graph

WSU

• Adjacency matrix
• A 2-dimension array where each dimension contains all vertices

• For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is 
false

• If edges have weights, set A[u][v] equal to the weight and use either a very large 
or a very small weight to indicate nonexistent edges (e.g., INF or -INF)

• Disadvantage?

• Requires Θ(|V|^2) space

• only appropriate if |E| = Θ(|V|^2)

• Wasteful if |E| << O(|V|^2)
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Dense v.s. sparse
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• Most graphs are sparse
• This means |E| << |V|

• Better solution for sparse graphs is an adjacency list representation
• Keep a list of all adjacent vertices for each vertex

• Space requirement becomes O(|E| + |V|)

• Instead of Θ(|V|^2) with the matrix

• Weights can be kept with edges in adjacency list

• Standard way to represent graphs
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Dense v.s. sparse
Graph

WSU
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v.s.

v.s.



Topological sort
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• Topological sort is an ordering of vertices in 
a directed acyclic graph, such that if there is 
a path from v_i to v_j , then v_j appears 
after v_i in the ordering

• Not work if there is a cycle in the graph

• Does not guarantee a unique ordering

• Used for deciding scheduling of work units
• Edges represent the dependency of work units

• Only those with an indegree of 0 can be “done” 
next
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Topographical sorting example
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• {v1 , v2 , v5 , v4 , v3 , v7 , v6} and 
{v1 , v2 , v5 , v4 , v7 , v3 , v6} are 
both valid topological 
orderings

1. Find node with no “in-edges”
1) In-degree of zero

2) Called a “source node”

2. Print out (process) node && 
remove it (and edges implicitly) 
from graph

• 3) Repeat
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Start from v1: 
in-degree = 0



Topographical sorting example
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Delete v2



Topographical sorting example
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Delete v5



Topographical sorting example
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Delete v4



Topographical sorting example
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Delete v7 
(or v3)



Topographical sorting example
Graph
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Delete v3



Topographical sorting example
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Delete v3

Delete order: v1, v2, v5, v4, v7, v3, v6 → topographical sorting order



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin 
and update 
in-degrees

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin 
and update 
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin 
and update 
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin 
and update 
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin 
and update 
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

V3 - 0 V6 - 1

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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Start from v1: 
in-degree = 0

V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

deleteMin 
and update 
in-degrees

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

V3 - 0 V6 - 1

V6 - 0

Implementation:
Save nodes in a heap 
by their in-degrees



WSU
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V1 - 0 V2 - 1 V5 - 1 V3 - 2 V7 - 2 V4 - 3 V6 - 3

V2 - 0 V3 - 1 V5 - 1 V4 - 2 V7 - 2 V6 - 3

V5 - 0 V3 - 1 V6 - 3 V4 - 1 V7 - 2

V4 - 0 V3 - 1 V6 - 3 V7 - 1

V7 - 0 V3 - 0 V6 - 2

V3 - 0 V6 - 1

V6 - 0

This is the output of 
topological sort



Application of topo sort
Graph

WSU
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Application of topo sort
Graph

WSU
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Shortest path algorithms
Graph

WSU

• How to go across graph at the lowest cost from A to B?
• “Short” can be defined in lots of ways - entirely application dependent

• This is where the cost of an edge truly starts to matter
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What is the shortest 
path from 1 to 3?



Shortest path: formal definition
Graph

WSU

• Single-source shortest-path problem:
• Given as input a weighted graph, G = (V, E), and a distinguished vertex s, find the 

shortest weighted path from s to every other vertex in G.

• Cost of a path is:
• Associated with each edge (v_i , v_j ) is a cost c{i,j} to traverse the edge. The cost 

of a path from V_1 to V_N: 
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Shortest path: positive edges
Graph

WSU

• v1 to v6?
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Shortest path: positive edges
Graph

WSU

• v1 to v6?
• v1 → v4 → v7 → v6

• Sum cost: 6
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Shortest path: negative edges
Graph
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• Go: v5 -> v4
• Takes 1 right?

• What about: 
 v5 -> v4 -> v2 -> v5 -> v4?
Perhaps you go around again?

• Extreme case: If I add 1 more edge 
(v5, v2), cost: -5, will you ever find a 
shortest path for v2 -> v5?

• When a negative cycle exists, shortest 
paths are not defined!
 -- Cost can go to -INF
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Unweighted shortest path
Graph

WSU

• Find shortest path from a vertex s to all other vertices

• Only care about number of edges in path, not their costs (cost == 1)
1. Mark starting node (s) with length 0

2. Look at all adjacent vertices with distance 1 from s

3. Repeat for all vertices at distance 2, then 3, etc

4. Once all nodes are marked, you are finished

• This is a breadth first search (BFS): the network is examined in layers, 
starting from a root node. Basically, level order traversal for trees

• Final result is all vertices are marked with distance from initial (s)

• Done in O( |E| + |V| ) time
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WSU
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Find shortest path from a vertex s to all other vertices

Choose s 
to be v3



WSU
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Initialize the distance of 
all vertices as INFINITY

Initialize the distance of s as 0



WSU
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Largest distance = |V|



WSU
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Largest distance = |V|

v: known and at 
current distance



WSU
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v: known and at 
current distance

Update adjacent 
vertices 

Set to known

Largest distance = |V|



WSU
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v: known and at 
current distance

Update adjacent 
vertices 

Set to known

Largest distance = |V|



WSU

60

v: known and at 
current distance

Update adjacent 
vertices 

Set to known

Largest distance = |V|



Weighted shortest path
Graph
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• BFS cannot solve this issue
• A path with more edges may have lower cost

• Dijkstra’s Algorithm takes into account edge weights for finding paths

• Don’t just keep the raw distance, but sum up the cost to get there

• Greedy algorithm - follow lowest cost path first every time.
• Queue is sorted by shortest path of the nodes not explored so far (priority queue 

time!)

• Again, keep a table of the vertices and their costs. Start them at INF
• If a node popped off of the queue shortens another node’s path

then benefits cascade down the chain automagically

• Heavily used in network routing and shortest path network choices
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General problem: setting weight=1 for each edge 
→ unweighted shortest path problem



Weighted shortest path
Graph

WSU

• Algorithm

• Put all vertices in a priority queue and the initial distance is INF except 
the source

• Select vertex v from the queue which has the smallest distance to v 
(denoted by d_v) among unknown vertices

• Declares shortest path from s to v is known

• For each adjacent node (denoted by w) of v

• If unweighted graph:

• set d_w = d_v + 1 (if d_w = INF, aka not visited yet), thus 
this lowers value of d_w if v was shorter path

• If weighted graph:

• Set d_w = d_v + c{v,w} (if this can reduce dw) 62



Weighted shortest path
Graph

WSU

• 1. Initialize distances according to the algorithm.

• All vertexes are stored in a min-heap (priority queue) according to 
the current distance to A. The initial distance is INF

63

Find the shortest path: 
A → B



Weighted shortest path
Graph
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• 2. Pick first node and calculate distances to adjacent nodes.
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Weighted shortest path
Graph

WSU

• 3. Pick next node with minimal distance (deleteMin()); repeat adjacent 
node distance calculations (decrease()).
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Weighted shortest path
Graph

WSU

• 3. Pick next node with minimal distance (deleteMin()); repeat adjacent 
node distance calculations (decrease()).

66



Weighted shortest path
Graph

WSU

• 4. Repeat Step 3, until no unknown vertices left in the queue
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Code for Dijkstra’s algorithm
Graph

WSU
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General problem: setting weight=1 for each edge 
→ unweighted shortest path problem



Code for Dijkstra’s algorithm
Graph

WSU
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Initialization 

Expand to vertices layer by 
layer to the farthest one



Dijkstra’s summary
Graph

WSU

• Shortest path algorithms are incredibly valuable

• Dijkstra’s Algorithm is fast and efficient
• By default, cannot work if there’s a negative cycle in the graph

• Works in O(|E| + |V|log |V|) time

• Explore all |E| edges

• Each round in the loop causes a percolation-up in the priority queue (minheap) of |V| 
vertices - or log |V|

• O(|E|) space needed to store all of the edges in the queue
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