

CPTS 223 Advanced Data Structure C/C++

Disjoint Sets (Union-Find)

Union-find algorithm

- Purpose:
 - To manipulate disjoint sets (i.e., sets that do not overlap)
 - Operations supported:

Union (x, y)	Performs a union of the sets containing two elements x and y
Find (x)	Returns a pointer to the set containing element x

Q: Under what scenarios would one need these operations?

Union-find: motivation

- Given a set S of n elements, [a1...an], compute all its equivalent classes
- Example applications:
 - Electrical cable/internet connectivity network
 - Cities connected by roads
 - Cities belonging to the same country

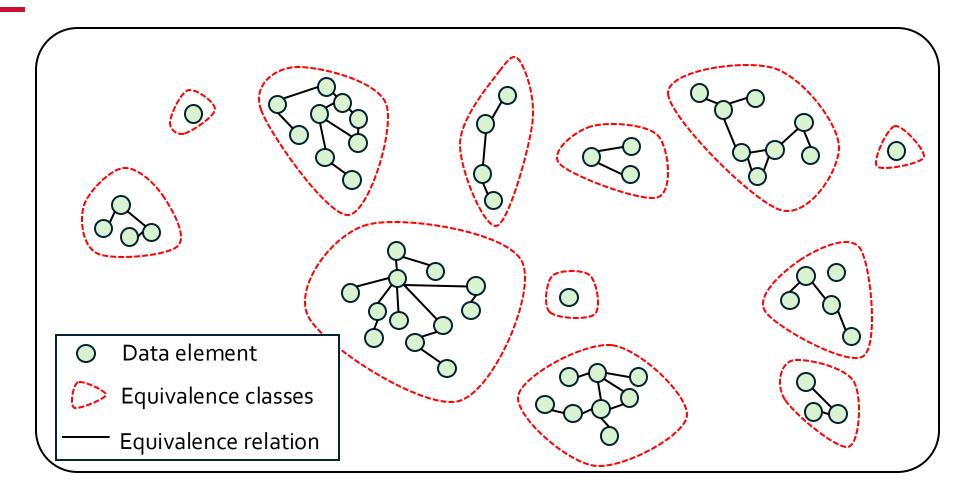
Equivalent relations

- An equivalence relation R is defined on a set S, if for every pair of elements (a,b) in S,
 - a R b is either false or true
- a R b is true iff:
 - (Reflexive) a R a, for each element a in S
 - (Symmetric) a **R** b if and only if b **R** a
 - (Transitive) a R b and b R c implies a R c
- The equivalence class of an element a (in S) is the subset of S that contains all elements related to a

Equivalence classes: properties

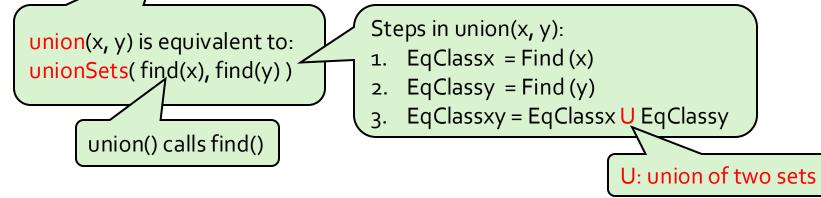
- An observation:
 - Each element must belong to exactly one equivalence class
- Corollary:
 - All equivalence classes are mutually disjoint
- What we are after is the set of all equivalence classes

Equivalence classes: example



Disjoint set operations

- To identify all equivalence classes:
- 1. Initially, put each element in a set of its own
- 2. Permit only two types of operations:
 - find(x): Returns the current equivalence class of x
 - union(x, y): Merges the equivalence classes corresponding to elements x and y (assuming x and y are related by the eq.rel.)



Compute equivalence classes

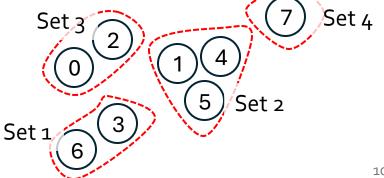
- Initially, put each element in a set of its own
 - i.e., EqClassa = $\{a\}$, for every $a \in S$
- FOR EACH element pair (a,b):
 - 1. Check [a R b == true]
 - 2. IF a R b THEN
 - 1) EqClassa = Find(a)
 - 2) EqClassb = Find(b)
 - 3) EqClassab = EqClassa U EqClassb

Specification for union-find

- Find(x)
 - Should return the id of the equivalence set that currently contains element x
- Union(a,b)
 - If a & b are in two different equivalence sets, then Union(a,b) should merge those two sets into one
 - Otherwise, no change

Union-find: efficient methods

- Approach 1: using array
 - Keep the elements in the form of an array, where:
 - A[i] stores the current set ID for element i
- Analysis:
 - find(): O(1) time •
 - union(): O(n) time
 - \rightarrow a sequence of m (union-find) operations could take O(m n) in the worst case
 - This is bad!



Union-find: efficient methods

- Approach 2: using linked list
 - Keep all equivalence sets in separate linked lists: a linked list for every set ID
- Analysis:
 - union(): O(1) time (assume doubly linked list)
 - find(): O(n) time
 - Improvements are possible (e.g., balanced BSTs) \rightarrow O(log(n))
 - A sequence of m operations takes $\Omega(m \log(n))$
 - Still not good!

Union-find: efficient methods

- Approach 3: using a forest
- Keep all equivalence sets in separate trees: 1 tree for 1 set
- Goal: ensure (somehow) that find() and union() take very little time
 - time << O(log n)
- That is the union-find data structure (or disjoin-set data structure)

The union-find data structure for n elements is a forest of k trees, where $1 \le k \le n$

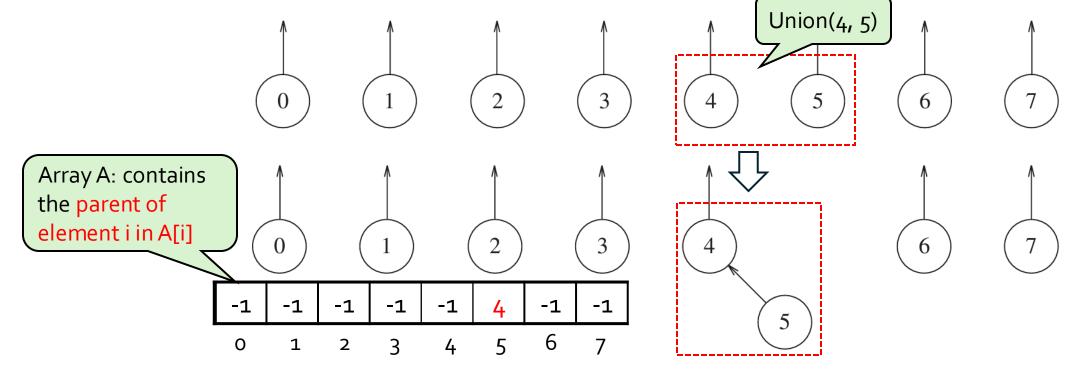
e

Basic union-find: initialization

- Initially, each element is put in one set of its own
 - Start with n sets == n trees
 - Each tree represents an equivalence set

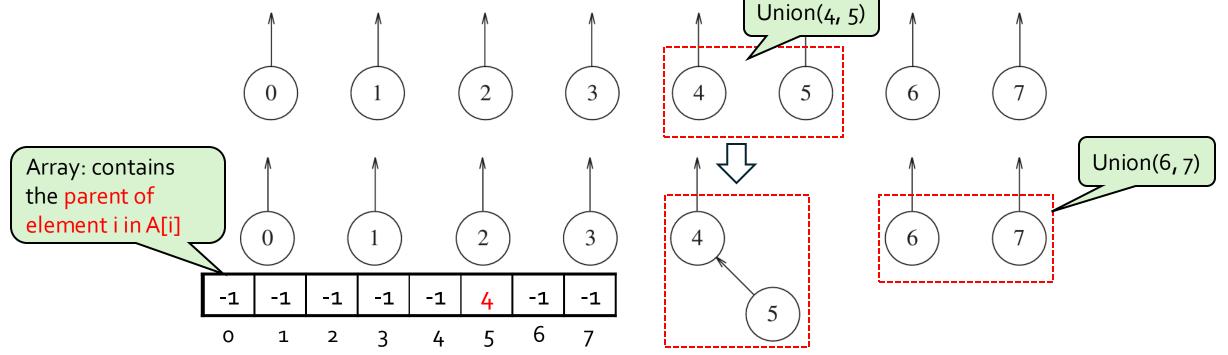
Basic union-find: union

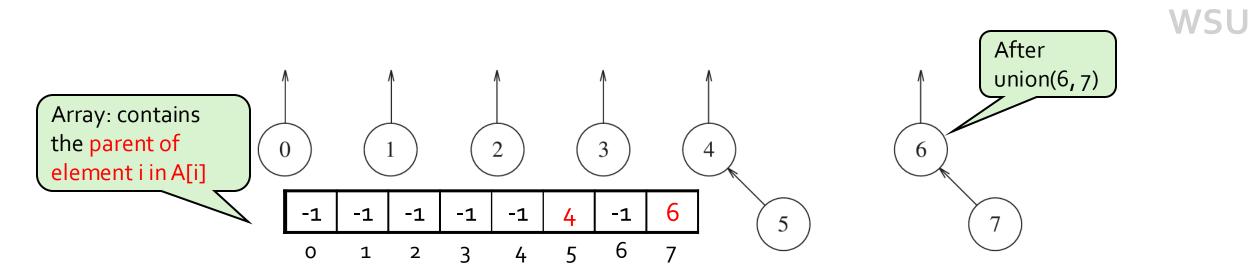
- Union two sets by merging two trees
 - e.g., union(x, y) \rightarrow make the second tree (y) a subtree of the first (x)

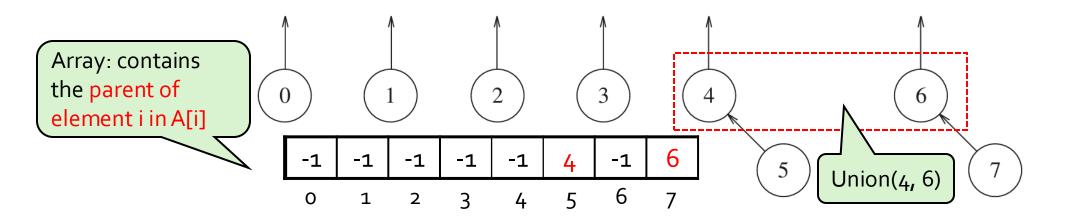


Basic union-find: union

- Union two sets by merging two trees
 - e.g., union(x, y) \rightarrow make the second tree (y) a subtree of the first (x)









```
class DisjSets
 1
 2
 3
       public:
         explicit DisjSets( int numElements );
 4
 5
         int find( int x ) const;
 6
 7
         int find( int x );
         void unionSets( int root1, int root2 );
 8
 9
                                  Array s: contains the
10
       private:
                                  parent of element i in s[i]
         vector<int> s;
11
                                  Initialization: i is root,
12
    };
                                  setting s[i]=-1
Figure 8.6 Disjoint sets class interface
```

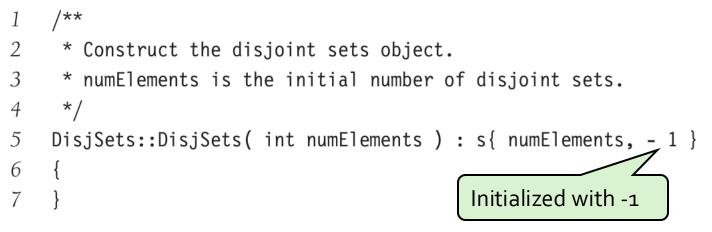
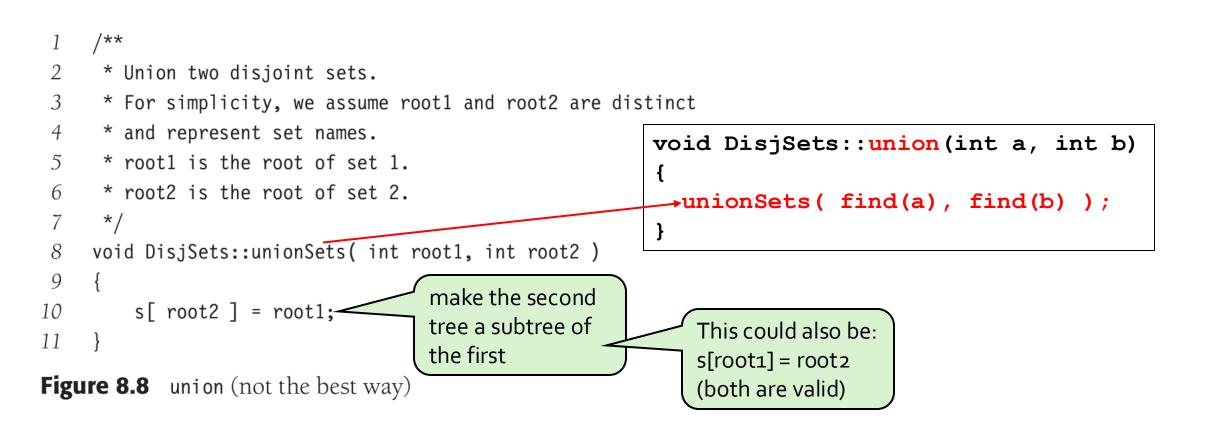
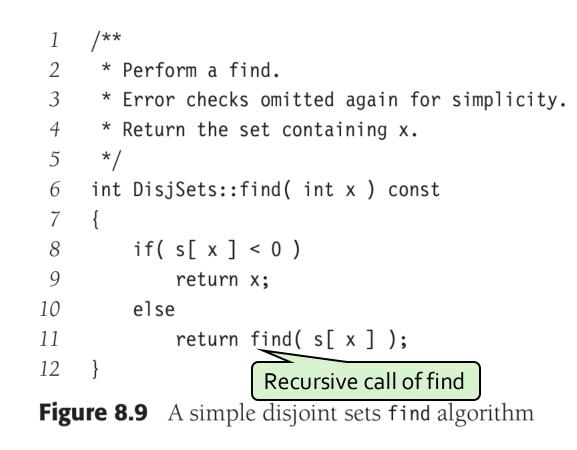


Figure 8.7 Disjoint sets initialization routine





Basic union-find: analysis

- Each unionSets() takes only O(1) in the worst case
- Each find() could take O(n) time find() is the bottleneck
 - Each union() could also take O(n) time
 - because union() calls find()
- Therefore, m operations, where m>>n, would take O(m n) in the worst-case
- Pretty bad!

Union-find: smarter version

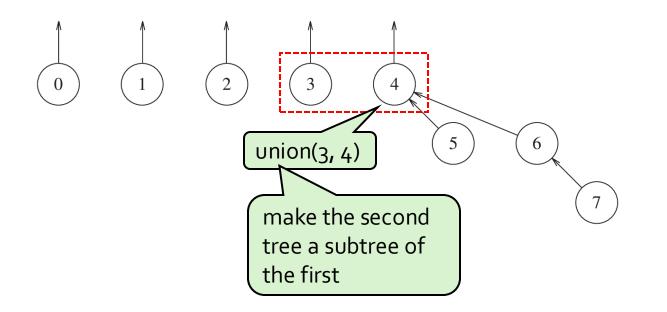
• Problem in basic union-find: arbitrary root attachment strategy

```
/**
 1
 2
     * Union two disjoint sets.
 3
     * For simplicity, we assume root1 and root2 are distinct
     * and represent set names.
 4
     * root1 is the root of set 1.
 5
     * root2 is the root of set 2.
 6
 7
      */
    void DisjSets::unionSets( int root1, int root2 )
 8
 9
10
        s[ root2 ] = root1;
11
```

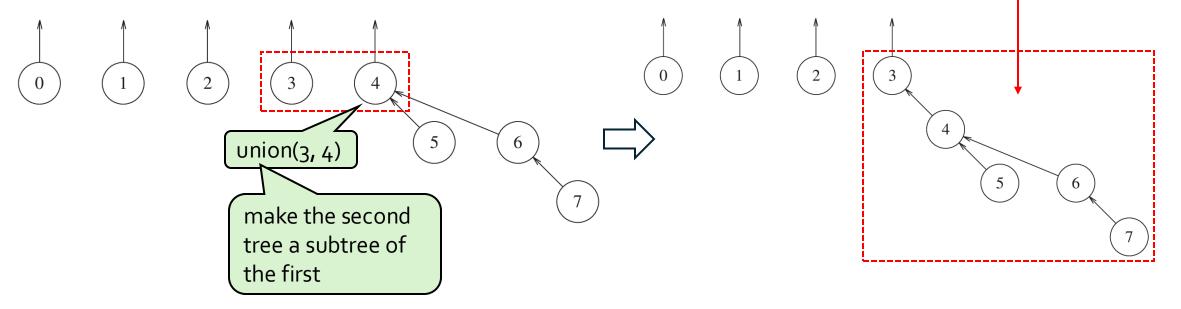
Figure 8.8 union (not the best way)

- Problem in basic union-find: arbitrary root attachment strategy
- The tree, in the worst-case, could just grow along one long path (O(n))

- Problem in basic union-find: arbitrary root attachment strategy
- The tree, in the worst-case, could just grow along one long path (O(n))



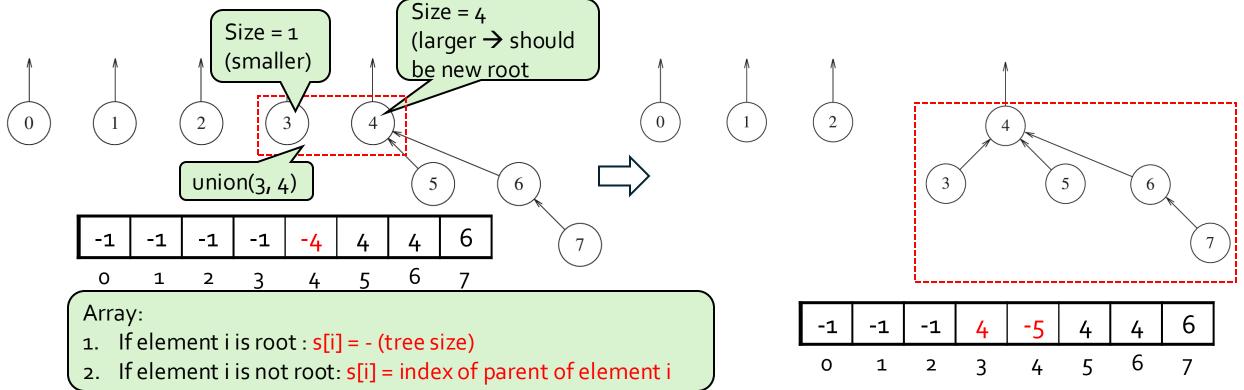
- Problem in basic union-find: arbitrary root attachment strategy
- The tree, in the worst-case, could just grow along one long path (O(n))



- Problem in basic union-find: arbitrary root attachment strategy
- The tree, in the worst-case, could just grow along one long path (O(n))
- Idea: Prevent formation of such long chains
- → Enforce union() to happen in a "balanced" way

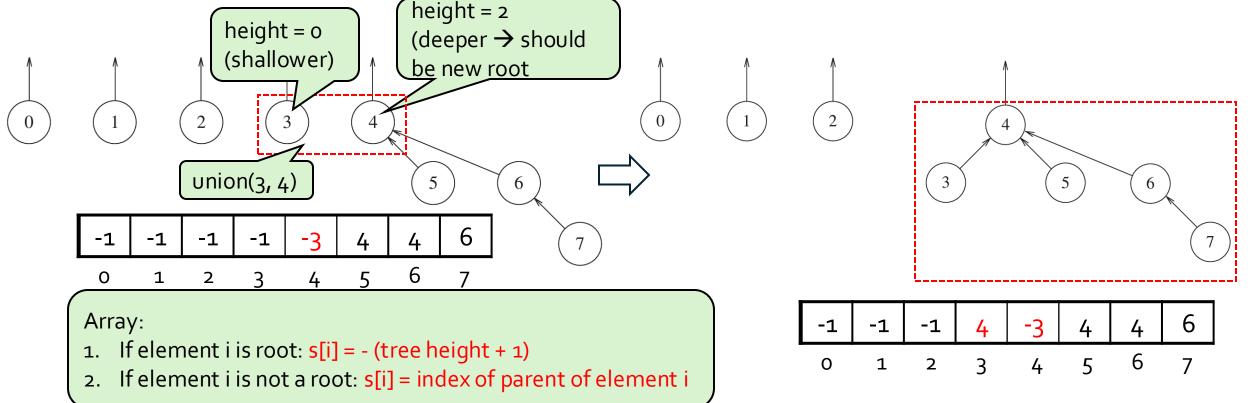
Smart union by size

• Attach the root of the "smaller" tree to the root of the "larger" tree



Smart union by height

• Attach the root of the "shallower" tree to the root of the "deeper" tree



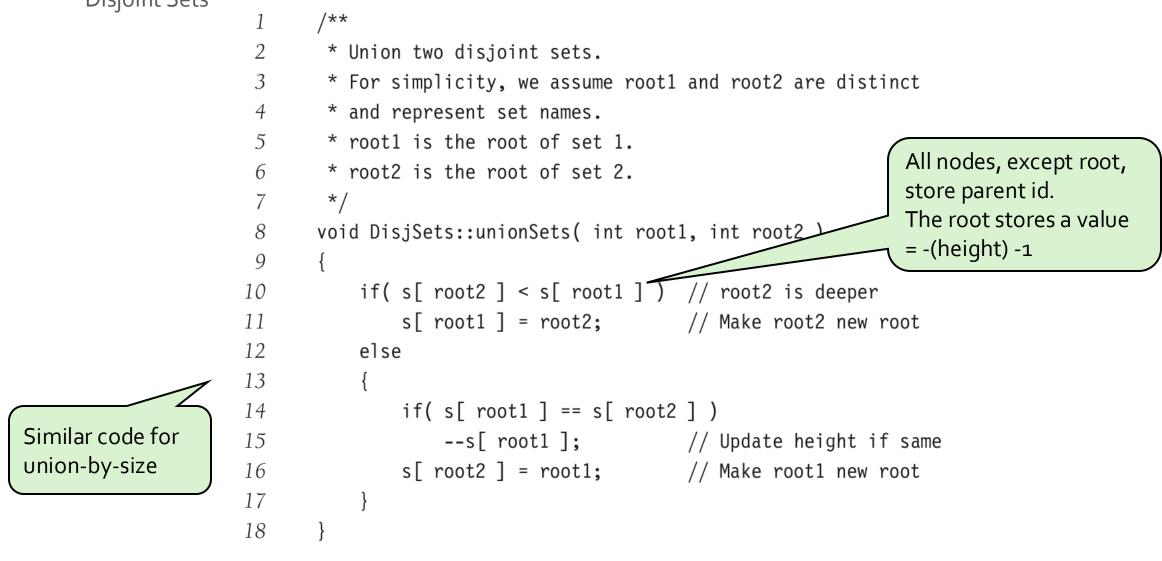


Figure 8.14 Code for union-by-height (rank)

Smart union: analysis

• Worst-case tree

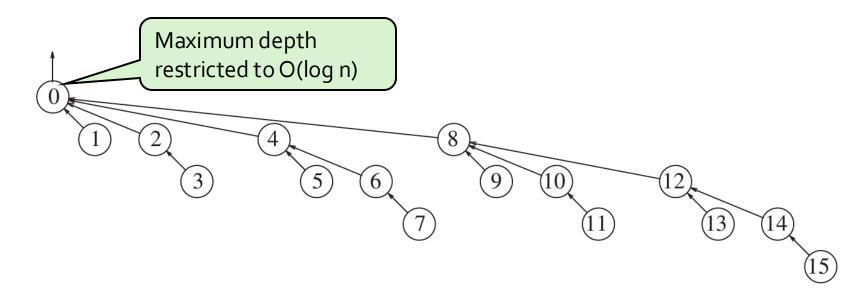


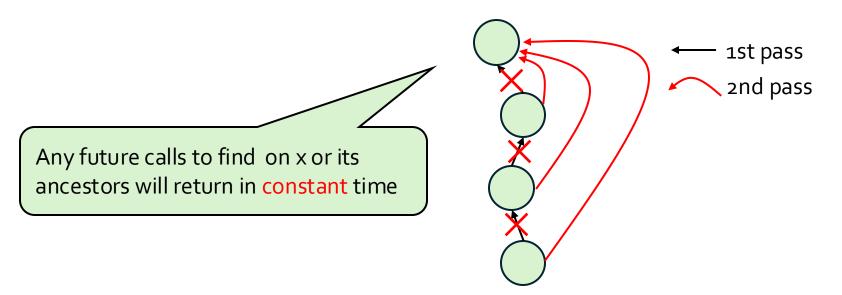
Figure 8.12 Worst-case tree for N = 16

Smart union: analysis

- For smart union (by rank or by size):
 - Find() takes O(log n);
 - union() takes O(log n);
 - unionSets() takes O(1) time
- For m operations: O(m log n) run-time
- Can it be better?
 - What is still causing the (log n) factor is the distance of the root from the nodes
 - Idea: Get the nodes as close as possible to the root
 - Solution: path compression

Path compression

- During find(x) operation:
 - Update all the nodes along the path from x to the root point directly to the root
 - A two-pass algorithm



Find() using path compression

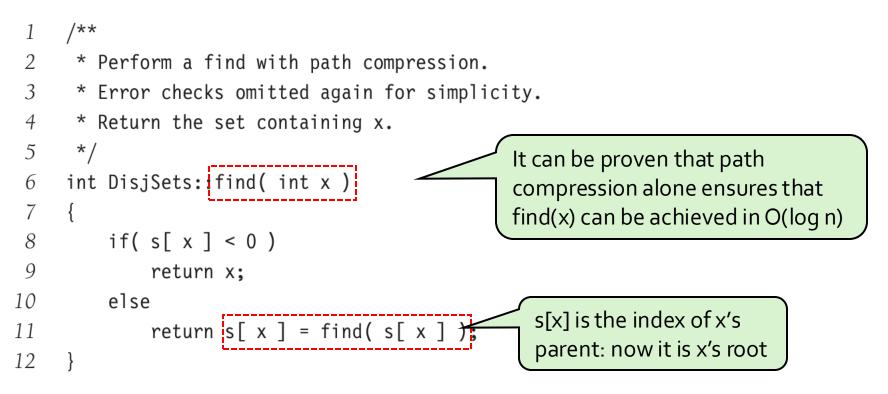


Figure 8.16 Code for disjoint sets find with path compression

Heuristics and their gains

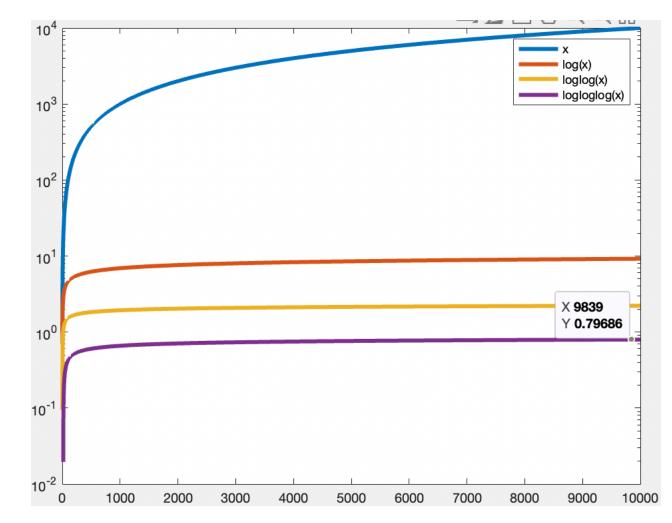
	Worst-case run-time for m operations
Arbitrary Union, Simple Find	O(m n)
Union-by-size, Simple Find	O(m log(n))
Union-by-rank, Simple Find	O(m log(n))
Arbitrary Union, Path compression Find	O(m log(n))
Union-by-rank, Find using path compression	O(m inverse_Ackermann(m, n)) = O(m log*(n))

Inverse Ackermann function

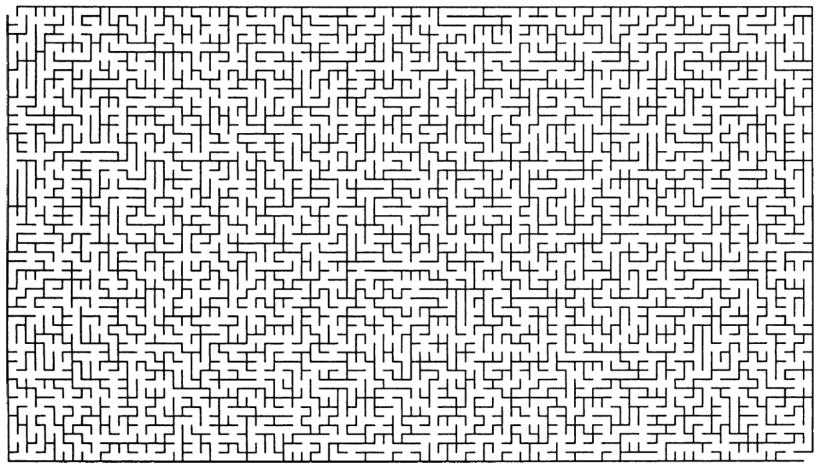
Very slow growth rate

- Definition of inverse Ackermann function
 - A(1,j) = 2j for j>=1
 - A(i,1)=A(i-1,2) for i>=2
 - A(i,j)= A(i-1,A(i,j-1)) for i,j>=2
 - InvAck(m,n) = min{i | A(i,floor(m/n))>log N}
- InvAck(m,n) = O(log*n) (pronounced "log star n")
- log*n = log log log log N
- log*65536 = 4 v.s. log2(65536) = 16
- log*265536 = 5 v.s. log2(265536) = 18

Inverse Ackermann function



Application: maze generation



Union-find algorithm

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Strategy:

- 1. As you find cells that are connected, collapse them into equivalent set
- 2. If no more collapses are possible, examine if the Entrance cell and the Exit cell are in the same set
 - If so \rightarrow we have a valid solution
 - Otherwise → no valid solutions exists

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Disjoint Sets

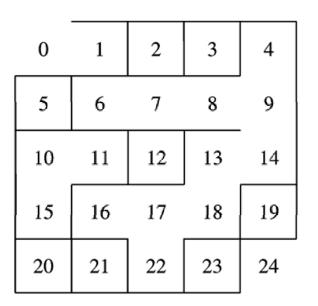
 $\{10, 11, 15\}$ $\{12\}$ $\{16, 17, 18, 22\}$ $\{19\}$ $\{20\}$ $\{21\}$ $\{23\}$ $\{24\}$

 $\{0, 1\}$ $\{2\}$ $\{3\}$ $\{4, 6, 7, 8, 9, 13, 14\}$ $\{5\}$

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Union-find algorithm

Union-find algorithm



 $\{0, 1\}\ \{2\}\ \{3\}\ \{4, 6, 7, 8, 9, 13, 14, 16, 17, 18, 22\}\$ $\{5\}\ \{10, 11, 15\}\ \{12\}\ \{19\}\ \{20\}\ \{21\}\ \{23\}\ \{24\}\$

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

Union-find: summary

- Union Find data structure
 - Simple & elegant
 - Complicated analysis
- Great for disjoint set operations
 - union & find
 - In general, great for applications with a need for "clustering"