
CPTS 223 Advanced Data
Structure C/C++

Disjoint Sets (Union-Find)

1

Union-find algorithm
Disjoint Sets (Union-Find)

WSU

• Purpose:
• To manipulate disjoint sets (i.e., sets that do not overlap)

• Operations supported:

2

Union (x, y) Performs a union of the sets
containing two elements x and y

Find (x) Returns a pointer to the set
containing element x

Q: Under what scenarios
would one need these
operations?

Union-find: motivation
Disjoint Sets (Union-Find)

WSU

• Given a set S of n elements, [a1…an], compute all its equivalent
classes

• Example applications:
• Electrical cable/internet connectivity network

• Cities connected by roads

• Cities belonging to the same country

3

Equivalent relations
Disjoint Sets (Union-Find)

WSU

• An equivalence relation R is defined on a set S, if for every pair of
elements (a,b) in S,
• a R b is either false or true

• a R b is true iff:
• (Reflexive) a R a, for each element a in S

• (Symmetric) a R b if and only if b R a

• (Transitive) a R b and b R c implies a R c

• The equivalence class of an element a (in S) is the subset of S that
contains all elements related to a

4

Equivalence classes: properties
Disjoint Sets (Union-Find)

WSU

• An observation:
• Each element must belong to exactly one equivalence class

• Corollary:
• All equivalence classes are mutually disjoint

• What we are after is the set of all equivalence classes

5

Equivalence classes: example
Disjoint Sets (Union-Find)

WSU

6

Equivalence classes

Equivalence relation

Data element

Disjoint set operations
Disjoint Sets (Union-Find)

WSU

• To identify all equivalence classes:

1. Initially, put each element in a set of its own

2. Permit only two types of operations:
• find(x): Returns the current equivalence class of x

• union(x, y): Merges the equivalence classes corresponding to elements x and y
(assuming x and y are related by the eq.rel.)

7

union(x, y) is equivalent to:
unionSets(find(x), find(y))

Steps in union(x, y):
1. EqClassx = Find (x)
2. EqClassy = Find (y)
3. EqClassxy = EqClassx U EqClassy

U: union of two sets

union() calls find()

Compute equivalence classes
Disjoint Sets

WSU

• Initially, put each element in a set of its own
• i.e., EqClassa = {a}, for every a  S

• FOR EACH element pair (a,b):
1. Check [a R b == true]

2. IF a R b THEN
1) EqClassa = Find(a)

2) EqClassb = Find(b)

3) EqClassab = EqClassa U EqClassb

8

Specification for union-find
Disjoint Sets

WSU

• Find(x)
• Should return the id of the equivalence set that currently contains element x

• Union(a,b)
• If a & b are in two different equivalence sets, then Union(a,b) should merge

those two sets into one

• Otherwise, no change

9

Union-find: efficient methods
Disjoint Sets

WSU

• Approach 1: using array
• Keep the elements in the form of an array, where:

• A[i] stores the current set ID for element i

• Analysis:
• find(): O(1) time

• union(): O(n) time

• → a sequence of m (union-find) operations could take O(m n) in the worst case

• This is bad!

10

3 2 3 1 2 2 1 4Array A

0 1 2 3 4 5 6 7

Set IDs 0
2

1 4

5
3

6

7Set 3 Set 4

Set 2
Set 1

Union-find: efficient methods
Disjoint Sets

WSU

• Approach 2: using linked list
• Keep all equivalence sets in separate linked lists: a linked list for every set ID

• Analysis:
• union(): O(1) time (assume doubly linked list)

• find(): O(n) time

• Improvements are possible (e.g., balanced BSTs) → O(log(n))

• A sequence of m operations takes (m log(n))

• Still not good!

11

Union-find: efficient methods
Disjoint Sets

WSU

• Approach 3: using a forest

• Keep all equivalence sets in separate trees: 1 tree for 1 set

• Goal: ensure (somehow) that find() and union() take very little time
• time << O(log n)

• That is the union-find data structure (or disjoin-set data structure)

12

The union-find data structure for
n elements is a forest of k trees,
where 1 ≤ k ≤ n

Basic union-find: initialization
Disjoint Sets

WSU

• Initially, each element is put in one set of its own
• Start with n sets == n trees

• Each tree represents an equivalence set

13

-1 -1 -1 -1 -1 -1 -1 -1

0 1 2 3 4 5 6 7

Array A: contains the parent of
element i in A[i]
If i is the root (no parent): set -1

Underlying implementation

Basic union-find: union
Disjoint Sets

WSU

• Union two sets by merging two trees
• e.g., union(x, y) → make the second tree (y) a subtree of the first (x)

14

Union(4, 5)

-1 -1 -1 -1 -1 4 -1 -1

0 1 2 3 4 5 6 7

Array A: contains
the parent of
element i in A[i]

Basic union-find: union
Disjoint Sets

WSU

• Union two sets by merging two trees
• e.g., union(x, y) → make the second tree (y) a subtree of the first (x)

15

Union(4, 5)

Union(6, 7)

-1 -1 -1 -1 -1 4 -1 -1

0 1 2 3 4 5 6 7

Array: contains
the parent of
element i in A[i]

WSU

16

After
union(6, 7)

-1 -1 -1 -1 -1 4 -1 6

0 1 2 3 4 5 6 7

Array: contains
the parent of
element i in A[i]

WSU

17

Union(4, 6)
-1 -1 -1 -1 -1 4 -1 6

0 1 2 3 4 5 6 7

Array: contains
the parent of
element i in A[i]

WSU

18

-1 -1 -1 -1 -1 4 -1 6

0 1 2 3 4 5 6 7
Union(4, 6)

-1 -1 -1 -1 -1 4 4 6

0 1 2 3 4 5 6 7

Array: contains
the parent of
element i in A[i]

Basic union-find: implementation
Disjoint Sets

WSU

19

Array s: contains the
parent of element i in s[i]
Initialization: i is root,
setting s[i]=-1

Basic union-find: implementation
Disjoint Sets

WSU

20

Initialized with -1

Basic union-find: implementation
Disjoint Sets

WSU

21

make the second
tree a subtree of
the first

void DisjSets::union(int a, int b)

{

 unionSets(find(a), find(b));

}

This could also be:
s[root1] = root2
(both are valid)

Basic union-find: implementation
Disjoint Sets

WSU

22

Recursive call of find

Basic union-find: analysis
Disjoint Sets

WSU

• Each unionSets() takes only O(1) in the worst case

• Each find() could take O(n) time
• Each union() could also take O(n) time

• because union() calls find()

• Therefore, m operations, where m>>n, would take O(m n) in the
worst-case

• Pretty bad!

23

find() is the bottleneck

Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

24

Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n))

25

Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n))

26

union(3, 4)

make the second
tree a subtree of
the first

Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n))

27

union(3, 4)

make the second
tree a subtree of
the first

Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n))

• Idea: Prevent formation of such long chains

• → Enforce union() to happen in a “balanced” way

28

Smart union by size
Disjoint Sets

WSU

• Attach the root of the “smaller” tree to the root of the “larger” tree

29

Size = 4
(larger → should
be new root

Size = 4

union(3, 4)

Size = 1
(smaller)

-1 -1 -1 -1 -4 4 4 6

0 1 2 3 4 5 6 7

Array:
1. If element i is root : s[i] = - (tree size)
2. If element i is not root: s[i] = index of parent of element i

-1 -1 -1 4 -5 4 4 6

0 1 2 3 4 5 6 7

Smart union by height
Disjoint Sets

WSU

• Attach the root of the “shallower” tree to the root of the “deeper” tree

30

height = 2
(deeper → should
be new root

Size = 4

union(3, 4)

height = 0
(shallower)

-1 -1 -1 -1 -3 4 4 6

0 1 2 3 4 5 6 7

Array:
1. If element i is root: s[i] = - (tree height + 1)
2. If element i is not a root: s[i] = index of parent of element i

-1 -1 -1 4 -3 4 4 6

0 1 2 3 4 5 6 7

Disjoint Sets
WSU

31

Similar code for
union-by-size

All nodes, except root,
store parent id.
The root stores a value
= -(height) -1

Smart union: analysis
Disjoint Sets

WSU

• Worst-case tree

32

Maximum depth
restricted to O(log n)

Smart union: analysis
Disjoint Sets

WSU

• For smart union (by rank or by size):
• Find() takes O(log n);

• union() takes O(log n);

• unionSets() takes O(1) time

• For m operations: O(m log n) run-time

• Can it be better?
• What is still causing the (log n) factor is the distance of the root from the nodes

• Idea: Get the nodes as close as possible to the root

• Solution: path compression

33

Path compression
Disjoint Sets

WSU

• During find(x) operation:
• Update all the nodes along the path from x to the root point directly to the root

• A two-pass algorithm

34

Any future calls to find on x or its
ancestors will return in constant time

1st pass

2nd pass

Find() using path compression
Disjoint Sets

WSU

35

It can be proven that path
compression alone ensures that
find(x) can be achieved in O(log n)

s[x] is the index of x’s
parent: now it is x’s root

Heuristics and their gains
Disjoint Sets

WSU

36

Worst-case run-time for m operations

Arbitrary Union, Simple Find O(m n)

Union-by-size, Simple Find O(m log(n))

Union-by-rank, Simple Find O(m log(n))

Arbitrary Union, Path compression Find O(m log(n))

Union-by-rank, Find using path compression O(m inverse_Ackermann(m, n))
= O(m log*(n))

Inverse Ackermann function
Disjoint Sets

WSU

• Definition of inverse Ackermann function
• A(1,j) = 2j for j>=1

• A(i,1)=A(i-1,2) for i>=2

• A(i,j)= A(i-1,A(i,j-1)) for i,j>=2

• InvAck(m,n) = min{i | A(i,floor(m/n))>log N}

• InvAck(m,n) = O(log*n) (pronounced “log star n”)

• log*n = log log log log ……. N
• log*65536 = 4 v.s. log2(65536) = 16
• log*265536 = 5 v.s. log2(265536) = 18

37

Very slow growth rate

Inverse Ackermann function
Disjoint Sets

WSU

38

Application: maze generation
Disjoint Sets

WSU

39

Union-find algorithm
Disjoint Sets

WSU

40

Strategy:

1. As you find cells that are connected, collapse them
into equivalent set

2. If no more collapses are possible, examine if the
Entrance cell and the Exit cell are in the same set

• If so → we have a valid solution
• Otherwise → no valid solutions exists

Union-find algorithm
Disjoint Sets

WSU

41

Union-find algorithm
Disjoint Sets

WSU

42

Union-find: summary
Disjoint Sets

WSU

• Union Find data structure
• Simple & elegant

• Complicated analysis

• Great for disjoint set operations
• union & find

• In general, great for applications with a need for “clustering”

43

	Slide 1: CPTS 223 Advanced Data Structure C/C++
	Slide 2: Union-find algorithm
	Slide 3: Union-find: motivation
	Slide 4: Equivalent relations
	Slide 5: Equivalence classes: properties
	Slide 6: Equivalence classes: example
	Slide 7: Disjoint set operations
	Slide 8: Compute equivalence classes
	Slide 9: Specification for union-find
	Slide 10: Union-find: efficient methods
	Slide 11: Union-find: efficient methods
	Slide 12: Union-find: efficient methods
	Slide 13: Basic union-find: initialization
	Slide 14: Basic union-find: union
	Slide 15: Basic union-find: union
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Basic union-find: implementation
	Slide 20: Basic union-find: implementation
	Slide 21: Basic union-find: implementation
	Slide 22: Basic union-find: implementation
	Slide 23: Basic union-find: analysis
	Slide 24: Union-find: smarter version
	Slide 25: Union-find: smarter version
	Slide 26: Union-find: smarter version
	Slide 27: Union-find: smarter version
	Slide 28: Union-find: smarter version
	Slide 29: Smart union by size
	Slide 30: Smart union by height
	Slide 31
	Slide 32: Smart union: analysis
	Slide 33: Smart union: analysis
	Slide 34: Path compression
	Slide 35: Find() using path compression
	Slide 36: Heuristics and their gains
	Slide 37: Inverse Ackermann function
	Slide 38: Inverse Ackermann function
	Slide 39: Application: maze generation
	Slide 40: Union-find algorithm
	Slide 41: Union-find algorithm
	Slide 42: Union-find algorithm
	Slide 43: Union-find: summary

