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Disjoint Sets (Union-Find)
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Union-find algorithm
Disjoint Sets (Union-Find)

WSU

• Purpose:
• To manipulate disjoint sets (i.e., sets that do not overlap)

• Operations supported:

2

Union (x, y) Performs a union of the sets  
containing two elements x and y

Find (x) Returns a pointer to the set  
containing element x

Q: Under what scenarios 
would one need these 
operations?



Union-find: motivation
Disjoint Sets (Union-Find)

WSU

• Given a set S of n elements, [a1…an], compute all its equivalent 
classes

• Example applications:
• Electrical cable/internet connectivity network

• Cities connected by roads

• Cities belonging to the same country
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Equivalent relations
Disjoint Sets (Union-Find)

WSU

• An equivalence relation R is defined on a set S, if for every pair of 
elements (a,b) in S,
• a R b is either false or true

• a R b is true iff:
• (Reflexive) a R a, for each element a in S

• (Symmetric) a R b if and only if b R a

• (Transitive) a R b and b R c implies a R c

• The equivalence class of an element a (in S) is the subset of S that 
contains all elements related to a
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Equivalence classes: properties
Disjoint Sets (Union-Find)
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• An observation:
• Each element must belong to exactly one equivalence class

• Corollary:
• All equivalence classes are mutually disjoint

• What we are after is the set of all equivalence classes
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Equivalence classes: example
Disjoint Sets (Union-Find)

WSU
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Equivalence classes

Equivalence relation

Data element



Disjoint set operations
Disjoint Sets (Union-Find)

WSU

• To identify all equivalence classes:

1. Initially, put each element in a set of its own

2. Permit only two types of operations:
• find(x): Returns the current equivalence class of x

• union(x, y): Merges the equivalence classes corresponding to elements x and y 
(assuming  x and y are related by the eq.rel.)
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union(x, y) is equivalent to: 
unionSets( find(x), find(y) )

Steps in union(x, y):
1. EqClassx  = Find (x)
2. EqClassy  = Find (y)
3. EqClassxy = EqClassx U EqClassy

U: union of two sets

union() calls find()



Compute equivalence classes
Disjoint Sets

WSU

• Initially, put each element in a set of its own
• i.e., EqClassa = {a}, for every a  S

• FOR EACH element pair (a,b):
1. Check [a R b == true]

2. IF a R b THEN
1) EqClassa = Find(a)

2) EqClassb = Find(b)

3) EqClassab = EqClassa U EqClassb

8



Specification for union-find
Disjoint Sets

WSU

• Find(x)
• Should return the id of the equivalence set that currently contains element x

• Union(a,b)
• If a & b are in two different equivalence sets, then Union(a,b) should merge 

those two sets into one

• Otherwise, no change
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Union-find: efficient methods
Disjoint Sets

WSU

• Approach 1: using array
• Keep the elements in the form of an array, where: 

• A[i] stores the current set ID for element i

• Analysis:
• find(): O(1) time

• union(): O(n) time

• → a sequence of m (union-find) operations could take O(m n) in the worst case

• This is bad!
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Union-find: efficient methods
Disjoint Sets

WSU

• Approach 2: using linked list
• Keep all equivalence sets in separate linked lists: a linked list for every set ID

• Analysis:
• union(): O(1) time (assume doubly linked list)

• find(): O(n) time

• Improvements are possible (e.g., balanced BSTs) → O(log(n))

• A sequence of m operations takes (m log(n))

• Still not good!
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Union-find: efficient methods
Disjoint Sets

WSU

• Approach 3: using a forest

• Keep all equivalence sets in separate trees: 1 tree for 1 set

• Goal: ensure (somehow) that find() and union() take very little time 
• time << O(log n)

• That is the union-find data structure (or disjoin-set data structure)
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The union-find data structure for 
n elements is a forest of k trees, 
where 1 ≤ k ≤ n



Basic union-find: initialization
Disjoint Sets

WSU

• Initially, each element is put in one set of its own
• Start with n sets == n trees

• Each tree represents an equivalence set
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-1 -1 -1 -1 -1 -1 -1 -1

0         1        2        3         4        5        6        7

Array A: contains the parent of 
element i in A[i]
If i is the root (no parent): set -1

Underlying implementation



Basic union-find: union
Disjoint Sets
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• Union two sets by merging two trees
• e.g., union(x, y) → make the second tree (y) a subtree of the first (x)
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Union(4, 5)

-1 -1 -1 -1 -1 4 -1 -1

0         1        2        3         4        5        6        7

Array A: contains 
the parent of 
element i in A[i]



Basic union-find: union
Disjoint Sets

WSU

• Union two sets by merging two trees
• e.g., union(x, y) → make the second tree (y) a subtree of the first (x)
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Union(4, 5)

Union(6, 7)

-1 -1 -1 -1 -1 4 -1 -1

0         1        2        3         4        5        6        7

Array: contains 
the parent of 
element i in A[i]



WSU
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After 
union(6, 7)

-1 -1 -1 -1 -1 4 -1 6

0         1        2        3         4        5        6        7

Array: contains 
the parent of 
element i in A[i]



WSU
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Union(4, 6)
-1 -1 -1 -1 -1 4 -1 6

0         1        2        3         4        5        6        7

Array: contains 
the parent of 
element i in A[i]



WSU
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-1 -1 -1 -1 -1 4 -1 6

0         1        2        3         4        5        6        7
Union(4, 6)

-1 -1 -1 -1 -1 4 4 6

0         1        2        3         4        5        6        7

Array: contains 
the parent of 
element i in A[i]



Basic union-find: implementation
Disjoint Sets

WSU
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Array s: contains the 
parent of element i in s[i]
Initialization: i is root, 
setting s[i]=-1



Basic union-find: implementation
Disjoint Sets

WSU
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Initialized with -1



Basic union-find: implementation
Disjoint Sets

WSU
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make the second 
tree a subtree of 
the first

void DisjSets::union(int a, int b)

{

  unionSets( find(a), find(b) );

}

This could also be:  
s[root1] = root2  
(both are valid)



Basic union-find: implementation
Disjoint Sets

WSU
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Recursive call of find



Basic union-find: analysis
Disjoint Sets

WSU

• Each unionSets() takes only O(1) in the  worst case

• Each find() could take O(n) time
• Each union() could also take O(n) time

• because union() calls find()

• Therefore, m operations, where m>>n, would take O(m n) in the 
worst-case

• Pretty bad!
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find() is the bottleneck



Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy
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Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n)) 

25



Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n)) 
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union(3, 4)

make the second 
tree a subtree of 
the first



Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n)) 
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union(3, 4)

make the second 
tree a subtree of 
the first



Union-find: smarter version
Disjoint Sets

WSU

• Problem in basic union-find: arbitrary root attachment strategy

• The tree, in the worst-case, could just grow along one long path (O(n)) 

• Idea: Prevent formation of such long chains

• → Enforce union() to happen in a “balanced” way
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Smart union by size
Disjoint Sets

WSU

• Attach the root of the “smaller” tree to the root of the “larger” tree
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Size = 4
(larger → should 
be new root

Size = 4

union(3, 4)

Size = 1 
(smaller)

-1 -1 -1 -1 -4 4 4 6

0         1        2        3         4        5        6        7

Array: 
1. If element i is root : s[i] = - (tree size)
2. If element i is not root: s[i] = index of parent of element i

-1 -1 -1 4 -5 4 4 6

0         1        2        3         4        5        6        7



Smart union by height
Disjoint Sets

WSU

• Attach the root of the “shallower” tree to the root of the “deeper” tree
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height = 2
(deeper → should 
be new root

Size = 4

union(3, 4)

height = 0 
(shallower)

-1 -1 -1 -1 -3 4 4 6

0         1        2        3         4        5        6        7

Array: 
1. If element i is root: s[i] = - (tree height + 1)
2. If element i is not a root: s[i] = index of parent of element i

-1 -1 -1 4 -3 4 4 6

0         1        2        3         4        5        6        7



Disjoint Sets
WSU
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Similar code for 
union-by-size

All nodes, except root, 
store parent id.
The root stores a value 
= -(height) -1



Smart union: analysis
Disjoint Sets

WSU

• Worst-case tree
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Maximum depth 
restricted to O(log n)



Smart union: analysis
Disjoint Sets

WSU

• For smart union (by rank or by size):
• Find() takes O(log n);

• union() takes O(log n);

• unionSets() takes O(1) time

• For m operations: O(m log n) run-time

• Can it be better?
• What is still causing the (log n) factor is the distance of the root from the nodes

• Idea: Get the nodes as close as possible to the root

• Solution: path compression
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Path compression
Disjoint Sets

WSU

• During find(x) operation:
• Update all the nodes along the path from x  to the root point directly to the root

• A two-pass algorithm
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Any future calls to find  on x or its 
ancestors will return in constant time

1st pass

2nd pass



Find() using path compression
Disjoint Sets

WSU
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It can be proven that path 
compression alone ensures that 
find(x) can be achieved in O(log n)

s[x] is the index of x’s 
parent: now it is x’s root



Heuristics and their gains
Disjoint Sets

WSU
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Worst-case run-time for m operations

Arbitrary Union, Simple Find O(m n )

Union-by-size, Simple Find O(m log(n))

Union-by-rank, Simple Find O(m log(n))

Arbitrary Union, Path compression Find O(m log(n))

Union-by-rank, Find using path compression O(m inverse_Ackermann(m, n))
= O(m log*(n))



Inverse Ackermann function
Disjoint Sets

WSU

• Definition of inverse Ackermann function
• A(1,j) = 2j for j>=1

• A(i,1)=A(i-1,2) for i>=2

• A(i,j)= A(i-1,A(i,j-1)) for i,j>=2

• InvAck(m,n) = min{i | A(i,floor(m/n))>log N}

• InvAck(m,n) = O(log*n) (pronounced “log star n”)

• log*n = log log log log ……. N
• log*65536 = 4 v.s. log2(65536) = 16
• log*265536 = 5 v.s. log2(265536) = 18
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Very slow growth rate



Inverse Ackermann function
Disjoint Sets

WSU
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Application: maze generation
Disjoint Sets

WSU
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Union-find algorithm
Disjoint Sets

WSU
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Strategy:

1. As you find cells that are connected, collapse them 
into equivalent set

2. If no more collapses are possible, examine if the 
Entrance cell and the Exit cell are in the same set

• If so → we have a valid solution
• Otherwise → no valid solutions exists



Union-find algorithm
Disjoint Sets

WSU
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Union-find algorithm
Disjoint Sets

WSU

42



Union-find: summary
Disjoint Sets

WSU

• Union Find data structure
• Simple & elegant

• Complicated analysis

• Great for disjoint set operations
• union & find

• In general, great for applications with a need for “clustering”
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